

City of Winnipeg Brady Road Resource Management Facility Area B Design

Geotechnical Report

City of Winnipeg

Project number: 60733855

January 2025

Delivering a better world

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada . ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2025 AECOM Canada ULC. All Rights Reserved. City of Winnipeg Brady Road Resource Management Facility Area B Design

Project number: 60733855

Quality information

Prepared by

Checked by

Camilo Olivar, B.Eng. Geotechnical German Leal, M.Eng., P.Eng. Discipline Lead

Breanna Martin Deputy Project Manager

Approved by

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	October 22, 2024	Draft	German Leal	Gene Acurin	Geotechnical EIT
1	January 22, 2025	Final	German Leal	Camilo Olivar	Geotechnical EIT

Distribution List

# Hard Copies	PDF Required	Association / Company Name	
	1	City of Winnipeg	
	1	AECOM Canada ULC.	

1

City of Winnipeg Andrew Sinclair, Eng. L., CET Consulting Contract Administrator City of Winnipeg 510 Main Street Winnipeg, MB R3B 1B9

Prepared by:

Camilo Olivar Geotechnical EIT M: 204-391-9896 E: camilo.olivar@aecom.com

German Leal Discipline Lead, Geotechnical M: 431-335-9734 E: german.leal@aecom.com

AECOM Canada ULC. 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 204.284.2040 aecom.com

© 2025 AECOM Canada ULC. All Rights Reserved.

This document has been prepared by AECOM Canada ULC. ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM

Table of Contents

1.	Introduction	. 1
1.1	General	1
1.2	Project Site	2
1.3	Proposed Construction	2
1.4	Background	3
1.4.1	Hydrogeologic Studies – Brady Road Landfill (UMA Engineering Ltd. 1987)	3
	Brady Road Resource Management Facility Cell Design and Master Plan Geotechnical Investigation and	
-	Assessment for Landfill Area A Development – Final (KGS Group, 2019)	
2.	Scope of Work	
3.	Investigation Program	. 6
3.1	Testhole Drilling and Soil Sampling	6
3.2	Laboratory Testing	7
4.	Subsurface Conditions	. 7
4.1	Soil Stratigraphy	7
4.1.1	Topsoil	7
4.1.2	Fat Clay (CH)	7
4.1.3	Silt (ML)	7
4.1.4	Sandy Silty Clay (CL-ML) Till	7
4.1.5	Bedrock	8
4.1.6	Groundwater and Sloughing Conditions	8
4.2	Laboratory Test Results	9
4.3	Classification of Bedrock	.11
4.3.1	Total Core Recovery (TCR)	.11
	Solid Core Recovery (SCR)	
	Rock Quality Designation (RQD)	
4.3.4	Bedrock Classification Results	12
5.	Geotechnical Concerns	12
6.	Recommendations	13
6.1	Basal Heave Due to Artesian Pressure	13
6.2	Frost	14
6.2.1	Frost Penetration	14
6.2.2	Frost Susceptibility	14
6.3	Cell Slope Stability Analysis	15
6.3.1	Cell Design Details	15
6.3.1.1	CoW Preferred Design (Option 1):	
6.3.1.2	60-meter Waste Pile Design (Option 2)	
6.3.2	Slope Stability Methodology	
6.3.2.1	Soil and Waste Strength Parameters	
6.3.2.2	Groundwater	
6.3.3	Slope Stability Results	
6.3.3.1	Recommendations During construction of the berm	
6.3.3.2	Recommended Side Slopes for Excavation	
6.3.3.3	Recommended Side Slopes for Landfill Waste	
6.4	Consolidation Analysis	25

6.4.1.2 60-meter Waste Pile Design (Option 2)	6.4.1.2 60-meter Waste Pile Design (Option 2) 25 6.4.2 Consolidation Methodology 25 6.4.2.1 General 25 6.4.2.2 Settlement of Landfill Waste 26 6.4.3 Consolidation Parameters 27 6.4.4 Consolidation Results 27 6.4.4 Consolidation Results 27 6.4.4 Consolidation Results 27 6.5 Waste Disposal Cell Liner 29 6.6 Access Roads 29 6.6.1 Traffic 29 6.6.2 Pavement Design 30 6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33	6.4.1	Consolidation Cell Design Details	25
6.4.2 Consolidation Methodology. 24 6.4.2.1 General. 25 6.4.2.2 Settlement of Landfill Waste 26 6.4.3 Consolidation Parameters 27 6.4.4 Consolidation Results 27 6.5 Waste Disposal Cell Liner. 29 6.6 Access Roads 29 6.6.1 Traffic 29 6.6.2 Pavement Design. 30 6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 32 Appendix A Site Photos 34	6.4.2Consolidation Methodology.256.4.2.1General.256.4.2.2Settlement of Landfill Waste266.4.3Consolidation Parameters276.4.4Consolidation Results.276.5Waste Disposal Cell Liner.296.6Access Roads.296.6.1Traffic296.6.2Pavement Design.306.6.3Construction of Pavement on Various Subgrades.326.6.3.1Constructing on Clay Subgrades.326.6.3.2Constructing on Silt Subgrades.327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing.339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix D Laboratory Results.37	6.4.1.1	CoW Preferred Design (Option 1)	25
6.4.2.1 General 24 6.4.2.2 Settlement of Landfill Waste 26 6.4.3 Consolidation Parameters 27 6.4.4 Consolidation Results 27 6.5 Waste Disposal Cell Liner 26 6.6 Access Roads 29 6.6.1 Traffic 29 6.6.2 Pavement Design 30 6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 Appendix A Site Photos 34	6.4.2.1 General 25 6.4.2.2 Settlement of Landfill Waste 26 6.4.3 Consolidation Parameters 27 6.4.4 Consolidation Results 27 6.4.4 Consolidation Results 27 6.5 Waste Disposal Cell Liner 29 6.6 Access Roads 29 6.6.1 Traffic 29 6.6.2 Pavement Design 30 6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 33 Appendix A Site Photos 34 Appendix B Testhole Location Plan 35 Appendix C Testhole Logs 36 Appendix D Laboratory Results 37	6.4.1.2	60-meter Waste Pile Design (Option 2)	25
6.4.2.2 Settlement of Landfill Waste 26 6.4.3 Consolidation Parameters 27 6.4.4 Consolidation Results 27 6.5 Waste Disposal Cell Liner 29 6.6 Access Roads 29 6.6.1 Traffic 29 6.6.2 Pavement Design 30 6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 34 Appendix A Site Photos 34	6.4.2.2 Settlement of Landfill Waste. 26 6.4.3 Consolidation Parameters 27 6.4.4 Consolidation Results. 27 6.5 Waste Disposal Cell Liner. 29 6.6 Access Roads. 29 6.6.1 Traffic 29 6.6.2 Pavement Design. 30 6.6.3 Construction of Pavement on Various Subgrades. 32 6.6.3.1 Constructing on Clay Subgrades. 32 6.6.3.2 Constructing on Silt Subgrades. 32 6.6.3.2 Construction of Pavement on Various Subgrades. 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing. 33 9. References 33 33 Appendix A Site Photos 34 Appendix B Testhole Location Plan 35 Appendix C Testhole Logs 36 Appendix D Laboratory Results. 37	6.4.2	Consolidation Methodology	25
6.4.3Consolidation Parameters216.4.4Consolidation Results216.5Waste Disposal Cell Liner226.6Access Roads296.6.1Traffic226.6.2Pavement Design306.6.3Construction of Pavement on Various Subgrades326.6.3.1Constructing on Clay Subgrades326.6.3.2Constructing on Silt Subgrades326.6.3.3Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34	6.4.3Consolidation Parameters276.4.4Consolidation Results276.5Waste Disposal Cell Liner296.6Access Roads296.6.1Traffic296.6.2Pavement Design306.6.3Construction of Pavement on Various Subgrades326.6.3.1Constructing on Clay Subgrades326.6.3.2Constructing on Silt Subgrades327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	6.4.2.1	General	25
6.4.4Consolidation Results.276.5Waste Disposal Cell Liner.296.6Access Roads.296.6.1Traffic296.6.2Pavement Design.306.6.3Construction of Pavement on Various Subgrades.326.6.3.1Constructing on Clay Subgrades.326.6.3.2Constructing on Silt Subgrades.327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing.339.References33Appendix A Site Photos34	6.4.4Consolidation Results.276.5Waste Disposal Cell Liner.296.6Access Roads.296.6.1Traffic296.6.2Pavement Design.306.6.3Construction of Pavement on Various Subgrades.326.6.3.1Constructing on Clay Subgrades.326.6.3.2Constructing on Silt Subgrades.327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing.339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs.36Appendix D Laboratory Results.37	6.4.2.2	Settlement of Landfill Waste	26
6.5Waste Disposal Cell Liner.296.6Access Roads.296.6.1Traffic296.6.2Pavement Design.306.6.3Construction of Pavement on Various Subgrades.326.6.3.1Constructing on Clay Subgrades.326.6.3.2Constructing on Silt Subgrades.327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing.339.References33Appendix A Site Photos34	6.5Waste Disposal Cell Liner	6.4.3	Consolidation Parameters	27
6.6Access Roads296.6.1Traffic296.6.2Pavement Design306.6.3Construction of Pavement on Various Subgrades326.6.3.1Constructing on Clay Subgrades326.6.3.2Constructing on Silt Subgrades327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34	6.6 Access Roads. 29 6.6.1 Traffic 29 6.6.2 Pavement Design. 30 6.6.3 Construction of Pavement on Various Subgrades. 32 6.6.3.1 Constructing on Clay Subgrades. 32 6.6.3.2 Constructing on Silt Subgrades. 32 6.6.3.2 Constructing on Silt Subgrades. 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing. 33 9. References 33 Appendix A Site Photos 34 Appendix B Testhole Location Plan 35 Appendix C Testhole Logs. 36 Appendix D Laboratory Results. 37	6.4.4	Consolidation Results	27
6.6.1 Traffic 29 6.6.2 Pavement Design 30 6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 Appendix A Site Photos 34	6.6.1Traffic296.6.2Pavement Design.306.6.3Construction of Pavement on Various Subgrades.326.6.3.1Constructing on Clay Subgrades.326.6.3.2Constructing on Silt Subgrades.327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing.339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs.36Appendix D Laboratory Results.37	6.5	Waste Disposal Cell Liner	29
6.6.2Pavement Design	6.6.2Pavement Design	6.6	Access Roads	29
6.6.3 Construction of Pavement on Various Subgrades 32 6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 Appendix A Site Photos 34	6.6.3Construction of Pavement on Various Subgrades326.6.3.1Constructing on Clay Subgrades326.6.3.2Constructing on Silt Subgrades327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	6.6.1	Traffic	29
6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 Appendix A Site Photos 34	6.6.3.1 Constructing on Clay Subgrades 32 6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 Appendix A Site Photos 34 Appendix B Testhole Location Plan 35 Appendix C Testhole Logs 36 Appendix D Laboratory Results 37	6.6.2	Pavement Design	30
6.6.3.2 Constructing on Silt Subgrades 32 7. Quality Assurance and Quality Control 33 8. Design Review, Construction Monitoring and Testing 33 9. References 33 Appendix A Site Photos 34	6.6.3.2Constructing on Silt Subgrades327.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	6.6.3		
 Quality Assurance and Quality Control	7.Quality Assurance and Quality Control338.Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	6.6.3.1		
 8. Design Review, Construction Monitoring and Testing	8.Design Review, Construction Monitoring and Testing339.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	6.6.3.2	• •	
9. References	9.References33Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	7.	Quality Assurance and Quality Control	33
Appendix A Site Photos	Appendix A Site Photos34Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	8.	Design Review, Construction Monitoring and Testing	33
••	Appendix B Testhole Location Plan35Appendix C Testhole Logs36Appendix D Laboratory Results37	9.	References	33
Annendix D. Teethole Leastion Dien	Appendix C Testhole Logs	Appen	idix A Site Photos	34
Appendix b restricte Location Plan	Appendix D Laboratory Results	Appen	dix B Testhole Location Plan	35
Appendix C Testhole Logs		Appen	idix C Testhole Logs	36
Appendix D Laboratory Results	Appendix E Slope Stability Design Outputs	Appen	idix D Laboratory Results	37
Appendix F Slope Stability Design Outputs		Appen	idix E Slope Stability Design Outputs	38
	Appendix F Settlement Design Outputs			

Figures

Figure 1: Area A and Area B	1
Figure 2: Graph of Groundwater Elevations Versus Time	
Figure 3: Factor of Safety for Various Excavation Depths and Groundwater Levels - Side Slope 3H:1V and	2 m Berm
(Short Term)	20
Figure 4: Factor of Safety for Various Excavation Depths and Groundwater Levels - Option 1 (30 m waste p	
Side Slope 3H:1V and 2 m Berm (Long Term)	21
Figure 5: Factor of Safety for Various Excavation Depths and Groundwater Levels - Option 2 (60 m waste p	oile) With
Side Slope 3H:1V and 2 m Berm (Long Term)	22

Tables

Table 1: Summary of Soil Layer (UMA, 1987)	
Table 2: Summary of Soil Layer (KGS, 2019)	4
Table 3: Comparison of Soil Layers	
Table 4: Groundwater Readings	
Table 5: Particle Size Analysis Results	
Table 6: Atterberg Limits Test Results	10
Table 7: One-Dimensional Consolidation Results	
Table 8: Hydraulic Conductivity Results	10
Table 9: Standard Proctor Results	10
Table 10: California Bearing Ratio Results (95% Compaction)	11
Table 11: Rock Classification Ranges	
Table 12: TCR, SCR, and RQD Results	
Table 13: Results of Basal Heave Due to Artesian Pressure	
Table 14: Frost Penetration Depth	
Table 15: Frost Susceptibility	
Table 16: Soil & Waste Parameters	
Table 17: Results of Excavation with 228.34 m Groundwater Elevation, Top of Berm 235.5 m	18
Table 18 Results of Excavation at 229.34 m Groundwater Elevation, Top of Berm 235.5 m	18
Table 19 Results of Excavation at 229.34 m Groundwater Elevation, Top of Berm 234.5 m	
Table 20: Slope Stability Results of Landfill Waste	
Table 21: Results of Excavation with 228.34 m Groundwater Elevation, Top of Berm 235.5 m, B-Bar 0.6	
Table 22 Results of Excavation with 228.34 m Groundwater Elevation, Top of Berm 234.5 m B-Bar 0.6	24
Table 23: Summary of Consolidation Parameters	
Table 24: Settlement of Option 1 and Option 2 Design	
Table 25: Traffic Data – Gravel Road	
Table 26: Traffic Data - Asphalt Road	
Table 27: Pavement Design Parameters – Gravel Roads	
Table 28: Pavement Design Parameters – Asphalt Roads	
Table 29: Pavement Recommendations	31

1. Introduction

1.1 General

AECOM Canada ULC. (AECOM) was retained by the City of Winnipeg (CoW) to provide geotechnical engineering services for the development of Area B due to the closure of Area A at the Brady Road Resource Management Facility (BRRMF). BRRMF is a 790-hectare, Class 1 Waste Disposal Ground and Resource Management Facility, located south of the perimeter highway between Brady Road and Waverly Street in Winnipeg, Manitoba.

Solid waste disposal is currently taking place in Area A at the BRRMF with Cell 34 being the last disposal cell in this area. This cell is anticipated to reach capacity in 2026. The next waste disposal cell to be developed is Cell 35 located within Area B, a 66-hectare site bound by Payette Road to the east, Brady Road to the west, Ethan Boyer Way to the north, and Charette Road to the south. A map of both Area A and Area B sites are provided in **Figure 1**.

Figure 1: Area A and Area B

This report addresses the findings of the geotechnical services for the development of Area B. The services included a geotechnical investigation in Area B to conduct soil profiling, rock coring and laboratory tests. Additionally, addressing geotechnical concerns and providing recommendations related to slope stability, consolidation and other constraints, based on current and proposed design of the landfill.

In this report, the current and proposed design of the landfill will be referred to as CoW Preferred Design (Option 1) and 60-meter Waste Pile Design (Option 2), respectively. Additionally, the findings from the geotechnical investigation in the southeast corner of Area B will be used for several design parameters specified in **Section 6**, as it is AECOM's understanding that the first cell to be developed (Cell 35) will be located in the southeast corner of Area B.

1.2 Project Site

Area B is comprised of long grass and weeds with thick bushes, and several ditches along the edges of the site. There are two berms located along the North and West side of the area. There is a leachate pipe that runs along the perimeter access road on the east side of area B (north to south). During the site investigation the entirety of area B was covered in vegetation and much of the area had standing water with poor drainage. There is also an access road that goes east to west in the middle of area B which was submerged in water in several spots during the geotechnical investigation.

Additionally, the area primarily consists of a thin layer of topsoil, measuring between 0.1 and 0.15 meters thick, underlain by clay that extends to approximately 15 meters deep. Beneath this clay layer, till containing cobbles and boulders are encountered, leading down to bedrock at approximately 25 meters depth.

1.3 Proposed Construction

AECOM understands that a preliminary discussion will be held regarding landfill design options, including road networks, leachate and gas management systems. As part of this proposed construction, AECOM will establish design excavation limits in compliance with landfill standards.

The development in Area B will begin in the southeast corner of the site (Cell 35). The height of the waste pile is measured from the approximate average elevation of the existing field (prairie level) of 233.5 m, measured from two (2) testhole (BH24-06, BH24-12) locations in the southeast corner of Area B. The City of Winnipeg instructed AECOM to design cells with a waste height of 30 meters and an excavation depth of 3.0 to 4.5 meters (Option 1). Alternatively, AECOM is considering a waste height of 60 meters with an excavation depth of 3.0 to 4.5 meters (Option 2). Both Option 1 and Option 2 are designed with a standard clay cap thickness of 0.85 m and a slope ratio of 3H:1V. It is AECOM's understanding that this slope ratio has been used in previous cells at the BRRMF. Further information on previous slope ratios at the BRRMF are presented in **Section 1.4**.

- CoW Preferred Design (Option 1)
 - Excavation Depth: 3.0 to 4.5 meters
 - Waste Height: 30 meters
 - Thickness of standard clay cap= 0.85 m
 - o Slope Ratio: 3H:1V
- 60-meter Waste Pile Design (Option 2)
 - o Excavation depth: 3.0 to 4.5 meters
 - Waste Height: 60 meters
 - Thickness of standard clay cap= 0.85 m
 - o Slope Ratio: 3H:1V

Additionally, the road design has been developed for a 20-year service life. To facilitate this future development, two additional test holes were drilled beneath the gravel road that separated the northern and southern sections of Area B.

1.4 Background

A recent geotechnical report titled, "Brady Road Resource Management Facility Cell Design and Master Plan Geotechnical Investigation and Stability Assessment for Landfill Area A Development – Final" (KGS Group, 2019) and an older report "Hydrogeologic Studies – Brady Road Landfill" (UMA Engineering Ltd., 1987) was reviewed prior to the field drilling program and the writing of this report.

Notably, previous landfill cells at the Brady Landfill were constructed with slope ratio's of 3H:1V. Slopes with this configuration were generally stable based on historical observations made by others during the construction of these cells.

1.4.1 Hydrogeologic Studies – Brady Road Landfill (UMA Engineering Ltd. 1987)

The hydrogeologic studies by UMA Engineering for the major landfill expansion include design recommendations for an efficient leachate collection system to prevent contamination of surface and groundwater. The study also recommends an environmental monitoring program to assess the landfill's design and control features. The objectives of the study were to define these key components:

- The regional geologic and hydrogeologic setting
- The specific hydrologic conditions and key stratigraphic units underlying the proposed development area
- The structure and permeability of the overburden
- The suitability of the overburden for long term containment of leachate
- State-of-the-art landfilling practices and regulatory requirements for environmental protection
- The potential for pollution of surface water or groundwater (GW) by sanitary landfilling
- Recommendations for landfill design parameters, environmental protection measures and monitoring programs.

The investigation program consisted of drilling twenty (20) testholes at selected locations across the site to determine the clay thickness and installation of piezometers at four (4) sites to provide data on the hydrogeology. Drilling at each of the four piezometers sites consisted of a nest of six holes. Four holes were drilled in the clay, one hole in the till and one hole into bedrock. At each of the four piezometer sites, four standpipes' piezometers were installed in the clay in separate holes, two standpipe piezometers were installed in the till in a single hole and one bedrock monitoring well was installed in the upper aquifer.

Table 1 summarizes the soil layers as recorded by UMA in 1987, detailing their thickness in meters and their elevation ranges in meters.

Table 1: Summary of Soil Layer (UMA, 1987)

Soil Layer	Thickness (m)	Elevations (m)	
Topsoil	0.1 to 0.5	234.52 to 232.67	
Clay	10.1 to 14.6	232.98 to 232.27	
Silt Till	0 to 5.1	223.28 to 218.00	

1.4.2 Brady Road Resource Management Facility Cell Design and Master Plan Geotechnical Investigation and Stability Assessment for Landfill Area A Development – Final (KGS Group, 2019)

In 2019, KGS Group conducted a geotechnical investigation to assess subsurface conditions and perform a slope stability analysis for the proposed cell side slopes. This investigation is compliant with the 2016 Standards for Landfills in Manitoba and included performance data from previous Brady Landfill excavations provided by Manitoba Sustainable Development. The study also evaluated excavation base stability and provided information regarding the subsurface soil and potential leachate seepage. The report consisted of the following:

- **Slope Stability Assessment:** A two-dimensional slope stability analysis was conducted on these representative cross sections.
- Summary Geotechnical Report: The report provides the following details:
 - An overview of site conditions, including soil stratigraphy, sloughing, and seepage conditions.
 - A description of the field investigation program, summarizing soil sampling and both in-situ and laboratory test results, such as field torvane, moisture content analyses, Atterberg limit tests, grain size analyses, and hydraulic conductivity.
 - Comprehensive test hole log records, incorporating field observations, laboratory test results, and UTM coordinates of the test holes.
 - Results of the slope stability assessment, including recommendations for the side slope geometry of the proposed Cell 31 excavation, addressing both short-term and long-term stability. Recommendations for side slopes are also provided for cells 32 to 34.
 - General construction considerations for excavations, including an evaluation of base heave stability, site drainage, and freeze-thaw susceptibility estimates.

Based on the geotechnical field investigation and stability assessment, the following key findings are summarized:

- The site's stratigraphy mainly consists of high plasticity silty clay underlain by glacial silt till, with some layers of topsoil, organic clay, and low plastic silt encountered in specific test holes.
- The clays are highly expansive, meaning they can swell or shrink with changes in stress or moisture content.

Table 2 summarizes the soil layers recorded by KGS in 2019, detailing their thickness in meters below ground surface (m BGS) and their elevation ranges in meters above sea level (m ASL).

Soil Types	Thickness (m BGS)	Elevations (m ASL)
Topsoil	0 to 0.1	234.5 to 232.7
Clay	9.0 to 14.0	224.5 to 233.5
Silt Till	0.2 to 2.6	223.3 to 218.0

Table 2: Summary of Soil Layer (KGS, 2019)

2. Scope of Work

The geotechnical study was conducted based on the proposal submitted on May 31, 2024, and includes the following work:

- A geotechnical drilling and soil sampling program at the proposed site to identify the existing soil and groundwater conditions. Rock coring was performed in three testholes;
- A laboratory testing program that included moisture contents on all collected grab samples, and Atterberg limits, particle size analysis, hydraulic conductivity, 1-D consolidation, California bearing ratio, and standard proctors on selected soil samples;
- A soil consolidation assessment based on Cow preferred Design (Option 1) and 60-meter Waste Pile Design (Option 2);
- Recommendations for the geometry of the cell design and side slopes based on Cow preferred Design (Option 1) and 60-meter Waste Pile Design (Option 2);
- Recommendations for the waste disposal liner;
- Pavement design options for the roadway base structure/roadway design;
- Preparation of this geotechnical report outlining the existing site conditions, frost penetration, and cell design recommendations;
- Number of testhole that was proposed was sixteen (16). Thirteen (13) were drilled.
- The proposed number of testholes were not drilled due to difficult access of the site, flooding conditions and soft soils; and,
- Use of this report is subject to the Statement of Qualifications and Limitations provided at the beginning of this report.

3. Investigation Program

An intrusive geotechnical investigation program was conducted to identify potential geotechnical constraints and to characterize the subsurface soil stratigraphy and groundwater conditions encountered in Area B. The Geotechnical investigation consisted of the following:

- Drilling 13 geotechnical testholes with depths ranging from 6.40 to 28.04 metres below ground surface (m bgs).
- Monitoring wells installed in clay (BH24-01, BH24-03, BH24-04, BH24-06, BH24-08, BH24-11, BH24-12, BH24-13 and BH24-15).
- Monitoring wells installed in till (BH24-02, BH24-03, BH24-04, BH24-06, BH24-08, BH24-09, BH24-10 and BH24-14).
- Monitoring wells installed in Limestone (BH24-03, BH24-06 and BH24-08)
- Grab samples, shelby tubes and core samples were obtained.
- Conducting laboratory testing on selected samples for classification and determination of engineering properties to be used in later geotechnical analyses.
- Site photos, testhole location plan, and testhole logs are included in **Appendix A**, **Appendix B** and **Appendix C** respectively. Detailed laboratory testing results, slope stability outputs, and settlement outputs are included in **Appendix D**, **Appendix E**, and **Appendix F**, respectively.

3.1 Testhole Drilling and Soil Sampling

The subsurface drilling and sampling program was conducted from July 10 to July 22, 2024. Drilling services were provided by Paddock Drilling under the supervision of AECOM geotechnical field personnel. The testhole location plan is provided in **Appendix B**. Thirteen testholes (identified as BH24-01 to BH24-15) were drilled on the project site using a track mounted drill rig, which was equipped with 125 mm solid stem augers. Originally the geotechnical investigation program had accounted for 16 testholes to be drilled. However, within the central section of the proposed Area B, north and south of the bisecting access road, standing water was present. The track mounted drill rig was unable to access these testhole locations, therefore BH24-05, BH24-07 and BH24-16 were removed from the geotechnical investigation due to accessibility issues.

Upon completion of the drilling program, testholes BH24-04, BH24-11, BH24-12, BH24-13, and BH24-15 were drilled to depth within the clay layer while BH24-01, BH24-02, BH24-09, BH24-10, and BH24-14 were drilled to depth within the till layer, and BH24-03, BH24-06, BH24-08, were drilled to depth within the bedrock. Auger refusal was encountered at depths ranging from 14.90 meters below ground surface (m BGS) to 15.50 m BGS, requiring coring equipment to advance to further depths. Shelby tubes were collected at select depths in testholes BH24-01, BH24-03, BH24-09, Standard penetration tests (SPTs) were conducted in the till layer in testholes BH24-03, BH24-06, and BH24-14. Rock coring was performed in testholes BH24-03, BH24-06, and BH24-08 to a final elevation ranging from 207.51 meters above sea level (m ASL) to 212.44 m ASL.

Soil samples were obtained directly from the auger flights at depth intervals ranging from 0.3 m to 1.5 m. Undisturbed soil samples were obtained using a 75 mm diameter Shelby tube. SPTs were conducted to assess the relative density of cohesionless soils. The soil samples were visually classified in the field and returned to our soil laboratory for additional examination and testing. Cohesive soil samples were tested using a torvane and pocket penetrometer to estimate the undrained shear strength and the compressive soil strength.

Upon completion of drilling, testholes were filled with silica sand followed by bentonite pellets to the surface. The testholes were examined for evidence of sloughing and groundwater seepage. Excess cuttings were left at the testhole location on the project site. The detailed testhole records are provided in **Appendix C**, which include a summary sheet outlining the symbols and terms of the testhole record.

3.2 Laboratory Testing

A laboratory testing program was performed on soil samples obtained during the drilling program to determine the relevant engineering properties of the subsurface materials. Testing included moisture contents (ASTM D2216), on all collected soil samples, as well as particle size analysis (ASTM D422), Atterberg limits tests (ASTM D4318), hydraulic conductivity (ASTM D5084), one-dimensional consolidation (ASTM D2435), standard proctor (ASTM D698), and California Bearing Ratio (CBR) (ASTM D1883) on select soil samples. In addition, torvane and pocket penetrometer readings were taken on auger grab samples. The results of the laboratory testing are shown in **Appendix D**.

4. Subsurface Conditions

Subsurface conditions observed during testhole drilling and sampling were visually documented by AECOM geotechnical personnel in accordance with the Unified Soil Classification System (USCS).

The subsurface characteristics of the site have been based on the investigation results obtained during the field and laboratory investigation program. The pertinent results from these investigations are outlined below.

4.1 Soil Stratigraphy

The soil stratigraphy within the project site generally consisted of topsoil, underlain by a clay deposit, till and bedrock. In BH24-02, BH24-04, BH24-08, and BH24-14 a silt layer was observed interbedded within the clay layer. Beneath the clay layer sandy silty clay till was observed, followed by bedrock below the till layer. A description of the soil stratigraphy is provided below. The detailed testhole logs are provided in **Appendix C**, which include a summary sheet outlining the symbols and terms of the testhole record.

4.1.1 Topsoil

Topsoil was encountered at the ground surface in all testholes. The thickness of the topsoil ranged from 0.10 to 0.15 m.

4.1.2 Fat Clay (CH)

Fat clay (CH) was encountered below the topsoil in all testholes except for BH24-02, where the fat clay (CH) was observed below a silt (ML) layer. The fat clay (CH) ranged in thickness from approximately 6.10 m to 14.94 m. The fat clay (CH) layer was observed at elevations ranging from 235.406 m ASL to 218.51 m ASL. The fat clay (CH) was of high plasticity, began as black in color, transitioning to brown between 0.76 m BGS to 1.50 m BGS, and again transitioning to grey at approximately 4.3 m BGS. The fat clay (CH) layer was typically observed to be firm to stiff and transitioned to soft to firm with depth. The moisture content of the fat clay ranged from 13.8% to 67.6% with an average of 45.8%.

4.1.3 Silt (ML)

A silt (ML) layer was observed below the topsoil in BH24-02, while an interbedded silt (ML) layer was encountered within the fat clay (CH) layer in BH24-04, BH24-08, and BH24-14. The silt (ML) ranged in thickness from 0.61 m to 0.76 m. The silt (ML) layer was encountered at elevations ranging from 233.32 m ASL to 232.04 m ASL. The silt (ML) was classified as tan and was soft. The moisture content ranged from 23.7% to 33.7% with an average of 28.2%.

4.1.4 Sandy Silty Clay (CL-ML) Till

Sandy silty clay (CL-ML) TILL was encountered below the fat clay (CH) in BH24-01 to BH24-03, BH24-06, BH24-08 to BH24-10, and BH24-14. The sandy silty clay (CL-ML) TILL was encountered at elevations ranging from 232.80 m ASL to 209.65 m ASL. Auger refusal was met in the sandy silty clay (CL-ML) TILL in this layer (BH24-03, BH24-06)

and required coring methods to reach the bedrock layer due to presence of cobbles and boulders. SPTs completed within the sandy silty clay (CL-ML) TILL show uncorrected "N" values ranging from 22 to >91 per 300 mm of penetration, classifying the materials as very stiff to hard in relative density. The moisture content ranged from 6.7% to 35.5% with an average of 16.6%. In the sandy silty clay (CL-ML) TILL layer, it was common to encounter cobbles and boulders.

Table 3 compares the elevation ranges (in meters above sea level) of different soil layers as recorded by UMA in 1987, KGS in 2019, and AECOM in 2024. The silt layer's elevations are only available for KGS and AECOM, showing similar ranges. The fat clay and silt till layers have comparable elevation ranges across all three sources, with some variations.

Table 3: Comparison of Soil Layers

Layer		Elevation (m ASL)			
Layor	UMA, 1987	KGS, 2019	AECOM, 2024		
Silt	-	234.5 to 232.7	233.3 to 232.0		
Fat Clay	232.3 to 224.0	233.5 to 224.5	235.4 to 218.5		
Glacial Till	223.3 to 218.0	223.3 to 218.0	232.8 to 209.7		

4.1.5 Bedrock

Bedrock was encountered below the sandy silty clay (CL-ML) TILL in cored testholes; BH24-03, BH24-06, and BH24-08. The Bedrock was observed to be dolomite; an Upper Fort Garry Member of the Red River Formation. The Bedrock was observed at elevations ranging from 214.57 m ASL to 209.65 m ASL and extended to unknown depths due to termination of the coring within this layer. The dolomite was in parts cherty, some limestone beds, and brecciated. The quality of the bedrock varied significantly which will be discussed further in **Section 4.3. Section 4.3.1** describes the total core recovery (TCR), **Section 4.3.2** describes the solid core recovery (SCR), **Section 4.3.3** describes the rock quality designation (RQD), and **Section 4.3.4** describes the bedrock classification results.

4.1.6 Groundwater and Sloughing Conditions

Groundwater seepage or soil sloughing conditions was not observed in most testholes upon completion of drilling. However, based on AECOM's experience in the Winnipeg area, seepage and sloughing is typically observed in the silt and till layers. Details of the location and nature of the sloughing, seepage, and groundwater encountered are provided on the testhole logs in **Appendix C**.

Standpipe piezometers were installed in all the testholes, excluding BH24-02. Groundwater readings were taken in August 2024. The readings recorded are summarized in **Table 4.**

	Stratum/Tip Elevation (m ASL)	Groundwater El	evation (m ASL)
Standpipe	(Depth (BGS m))	Aug. 1, 2024	Aug. 22, 2024
BH24-01	Fat CLAY/224.72 (8.84)	228.56	228.56
BH24-03	Fat CLAY/227.94 (7.62)	228.08	228.18
BH24-03	Sandy Silty CLAY TILL/220.32 (15.24)	223.56	225.61
BH24-03	BEDROCK/207.52 (28.04)	227.87	227.69

Table 4: Groundwater Readings

	Stratum/Tip Elevation (m ASL)	Groundwater El	evation (m ASL)
Standpipe	(Depth (BGS m))	Aug. 1, 2024	Aug. 22, 2024
BH24-04	Fat CLAY/226.55 (7.62)	232.28	232.32
BH24-06	Fat CLAY/227.47 (6.40)	228.34	228.55
BH24-06	Sandy Silty CLAY TILL/218.53 (15.24)	227.83	227.71
BH24-06	BEDROCK/212.43 (21.34)	227.94	227.80
BH24-08	Fat CLAY/227.63 (6.10)	228.35	228.52
BH24-08	Sandy Silty CLAY TILL/217.88 (15.85)	228.64	228.41
BH24-08	BEDROCK/207.52 (26.21)	227.94	226.82
BH24-09	Sandy Silty CLAY TILL/219.94 (13.72)	232.97	232.98
BH24-10	Sandy Silty CLAY TILL/216.84 (16.76)	227.14	227.57
BH24-11	Fat CLAY/224.76 (9.14)	226.55	225.91
BH24-12	Fat CLAY/225.76 (7.62)	226.82	227.14
BH24-13	Fat CLAY/225.93 (7.62)	232.82	232.551
BH24-14	Sandy Silty CLAY TILL/218.79 (15.24)	228.11	228.074
BH24-15	Fat CLAY/227.27 (6.40)	228.225	228.635

It should be noted that the hydrogeology team suspected that BH24-04, BH24-09 and BH24-13 were compromised due to the unusually high groundwater elevations observed at these locations.

Additionally, only short-term seepage and sloughing conditions were observed in the testholes. Groundwater levels will normally fluctuate during the year and will be dependent on precipitation, surface drainage, and regional groundwater regimes. Groundwater seepage and soil sloughing should be expected from the silt (ML) and the sandy silty clay (CL-ML) TILL layer.

4.2 Laboratory Test Results

A variety of laboratory testing was performed on select samples collected from the field drilling program. Moisture content tests were conducted on soil samples recovered from testholes with the moisture content (ASTM D2216) test results shown on the testhole records provided in **Appendix C**. Select representative soil samples were also tested for particle size analysis (ASTM D422, **Table 5**), Atterberg limits (ASTM D4318, **Table 6**), one-dimensional consolidation (ASTM D2435, **Table 7**), hydraulic conductivity (**Table 8**), standard proctor (ASTM D698, **Table 9**), and CBR (ASTM D1883, **Table 10**).

				e Size		
Testhole No.	Sample Depth (m BGS)	Soil Type	Gravel (mm)	Sand (mm)	Silt (mm)	Clay (mm)
			75 to 4.75	<4.75 to 0.075	<0.075 to 0.002	<0.002
BH24-01	4.57 – 5.18	СН	0.10%	0.40%	30.80%	68.70%
BH24-01	10.67 – 11.28	СН	0.20%	2.90%	30.60%	66.30%
BH24-08	1.37 – 1.52	CL	0.00%	21.20%	60.70%	18.00%
BH24-10	16.61 – 16.76	CL-ML	3.00%	41.60%	42.40%	13.00%

Table 5: Particle Size Analysis Results

Table 6: Atterberg Limits Test Results

Testhole No.	Sample Depth (m BGS)	Soil Type	Liquid Limit	Plastic Limit	Plasticity Index	Activity
BH24-01	4.57 – 5.18	СН	85	24	61	0.89
BH24-01	10.67 – 11.28	СН	81	22	59	0.89
BH24-08	1.37 – 1.52	CL	28	16	12	0.67
BH24-10	16.61 – 16.76	CL-ML	17	11	8	0.62

Table 7: One-Dimensional Consolidation Results

Testhole No.	Sample Depth (m BGS)	Saturation (%)	Moisture Content (%)	Initial Void Ratio	Compression Index	Preconsolidation Pressure (kPa)
BH24-09	1.52 - 2.13	96.7	34.2	0.8121	0.214	100
BH24-09	10.7 - 11.3	90.8	59.2	1.797	1.002	232

Table 8: Hydraulic Conductivity Results

Testhole No. Undisturbed Preparation Process	Sample ID	Sample Depth (m BGS)	Average Hydraulic Conductivity (m/sec)
BH24-01	T4	1.52 - 2.13	1.60E-10
BH24-01	Т7	4.57 - 5.18	5.90E-11
BH24-01	T13	10.67 - 11.28	8.60E-11
BH24-03	T10	7.62 - 8.23	1.10E-10

Table 9: Standard Proctor Results

Testhole No.	Sample Depth (m BGS)	Soil Type	Maximum Dry Density (kg/m³)	Optimum Moisture Content (%)
BH24-01 to BH24-15	0.46 - 1.52	Fat Clay (CH)	1595	24.1

Testhole No.	Sample Depth	Soil Type	Dry Density (kg/m³)	CBR at 2.54 mm	CBR at 5.08 mm
BH24-01 to BH24- 15	0.45 - 1.50	Fat Clay (CH)	1515	2.5	2.1

Table 10: California Bearing Ratio Results (95% Compaction)

Note: CBRs tested at 95% of maximum dry density

4.3 Classification of Bedrock

Three methods were employed to calculate the discontinuities in the bedrock, yielding three different percentages. Routine drill core descriptions, including TCR, SCR, and RQD, are primarily designed to provide insights into the rock's discontinuities. The RQD indicates the quality of the rock as a percentage, as illustrated in **Table 12**.

4.3.1 Total Core Recovery (TCR)

Total core recovery (TCR) is the testhole core recovery percentage. TCR is expressed as follows:

$$TCR(\%) = \frac{sum of recovered core length}{total core length} x 100$$

The TCR as calculated for each bedrock core run advanced within the testholes. A summary of TCR values is provided in **Table 12**. The TCR ranged from 70% to 86%.

4.3.2 Solid Core Recovery (SCR)

Solid core recovery (SCR) is the testhole core recovery percentage of solid cylindrical rock. SCR is expressed as follows:

$$SCR(\%) = \frac{sum of recovered solid cylindrical core lengths}{total core length} x 100$$

The SCR was calculated for each bedrock core run advanced within the testhole. A summary of the SCR values is provided in **Table 12**. The solid core recovery was observed to be between 26% to 81%.

4.3.3 Rock Quality Designation (RQD)

RQD is based on the ISRM classification system. The RQD is an indirect measure of the number of fractures and the amount of jointing in the rock mass. The RQD is expressed as a percentage of the ratio of summed core lengths (greater than 10 cm) to the total length cored. The RQD index is used to provide a classification of the rock quality shown in **Table 11**.

Table 11: Rock Classification Ranges

RQD (%)	Rock Quality Designation
0 – 25	Very Poor
25 – 50	Poor
50 – 75	Fair
75 – 90	Good
90 – 100	Excellent

RQD is expressed as follows:

 $RQD (\%) = \frac{sum of recovered core lengths greather than 10 cm}{total core length} x 100$

The RQD was calculated for each core run advanced within BH24-03, BH24-06, and BH24-08. A summary of the RQD values is provided in **Table 12**.

4.3.4 Bedrock Classification Results

Based on the rock classification and laboratory test results, the encountered bedrock classification ranges from poor to fair quality.

Testhole ID	Sample Number	Core Run Depth (m BGS)	Elevation (m ALS)	TCR (%)	SCR (%)	RQD (%)	Rock Quality Designation
BH24-03	C17	25.91 – 28.04	209.65 – 207.52	70	35	36	Poor
BH24-06	C14	19.20 – 21.34	214.57 – 212.43	84	26	58	Fair
BH24-08	C17	23.77 – 26.21	209.96 – 207.52	86	81	49	Poor

Table 12: TCR, SCR, and RQD Results

5. Geotechnical Concerns

Based on the results of the geotechnical investigation and the current understanding of the proposed development of Cell 35, the primary geotechnical concern is the groundwater table at the southeast corner of Area B, as it is AECOMs understanding that Cell 35 will be developed in that location.

The southeast corner has a groundwater elevation of 228.34 m ASL (5.46 m BGS) The geotechnical group confirmed the elevation of the groundwater with AECOM's hydrogeology team.

From a geotechnical perspective, it is ideal to maintain the groundwater table below the excavation depth. As the excavation depth approaches the groundwater elevation (228.34 m ASL), several concerns may arise due to the proximity of the groundwater table. **Section 6.3.3** presents five (5) scenarios for excavation in Cell 35 as the final excavation depth of the cell is unknown at this time.

The following concerns may occur when excavation depths reach near or at the groundwater table:

- Water infiltration: Water can flow in the excavation site, leading to flooding or ponding which can complicate construction.
- Slope Stability: Saturated soils will likely reduce the soil strength, increasing the risk of slumps and slope movements.
- Heaving: The buoyancy of groundwater can cause the bottom of the excavation to heave.

Additionally, high groundwater elevations were observed in Area B at BH24-04 (232.28 m ASL), BH24-09 (232.97 m ASL) and BH24-13 (232.82 m ASL). These groundwater elevations were approximately 1.28 m, 0.69 m and 0.73 m BGS, respectively. Notably, the hydrogeology team suspect these monitoring wells are compromised, and an additional investigation may be required to confirm.

More information on groundwater monitoring is specified in Section 6.3.2.2.

6. Recommendations

Based on discussions with the client, it is AECOM's understanding that construction will begin in the southeastern portion of Area B (Cell 35). Therefore, recommendations presented in **Section 6** are based on our investigation findings, including field work conducted in the southeast of Area B (Cell 35), as well as a review of the KGS geotechnical report titled, "Brady Road Resource Management Facility Cell Design and Master Plan Geotechnical Investigation and Stability Assessment for Landfill Area A Development – Final" (KGS Group, 2019).

6.1 Basal Heave Due to Artesian Pressure

According to Canadian Foundation Engineering Manual (CFEM 5e), when an excavation is dug into a clay deposit underlain by a pervious stratum under artesian pressure, pressure and seepage may result, leading to instability of the excavation. Basal heave analysis has been prepared for the design of the excavation, excavation depth and piezometric condition within the underlying fat clay. The basal heave analysis is based on the ratio of total stresses and uplift pore water pressure.

The following calculation was done to represent the soil conditions of the southeast corner of Area B where the first cell (Cell 35) is planned to be developed. The unit weight of clay (17.5 kN/m³), groundwater (GW) table (228.34 m ASL) and the average existing grade (233.5 m ASL) used values are specified in **Section 6.3**. The approximate elevation of the till layer was determined from the average testholes BH24-06 and BH24-01 (220 m ASL). Additionally, the maximum excavation depth of 4.5 m (229 m ASL) was used in the calculation.

Additionally, a basal heave calculation was done for BH24-09 as it was recorded to have the highest groundwater table recorded in Area B. Groundwater table, existing grade and elevation of till layer for BH24-09 are summarized in **Table 13** and were obtained directly from the gINT logs in **Appendix C**. Excavation depth (4.5 m), unit weight of clay (17.5 kN/m³) and unit weight of water (9.81 kN/m³) were used as well in the calculation for BH24-09.

For this approach, The FS of the basal heave is expressed using the following equation:

$$FS = \frac{H_C \gamma_C}{H_w \gamma_w}$$

Where

 γ_c = unit weight of fat clay (Brown) = 17.5 kN/m³

 H_c = thickness of the fat clay between the bottom of excavation to the top of the glacial till

 γ_w = unit weight of water = 9.81 kN/m³

H_w = the total head in the glacial till layer (total head)

Table 13: Results of Basal Heave Due to Artesian Pressure

Location	Hc (m)	Hw (m)	FS
Cell 35	9.0	8.34	1.93
BH24-09	7.8	11.78	1.18

As per the CFEM 5e in section 22.3, heave due to artesian pressure at depth is deemed satisfactory if FS is greater than 1.1. Based on the results, the FS due to artesian pressure at the maximum excavation depth of 4.5 m is 1.93 and 1.18 for Cell 35 and BH24-09, respectively. If FS is less than 1.1, the contractor should consider the development of a dewatering plan. The FS for BH24-09 is satisfactory but may require another assessment when future development near this area occurs.

6.2 Frost

This section pertains exclusively to roads and leachate conveyance piping. It is not relevant to and does not impact the waste pile.

6.2.1 Frost Penetration

The depths of frost penetration have been estimated for a range of annual air freezing identified in **Table 14**. The annual average freezing index was inferred from Figure K-4 of the National Building Code of Canada (2020) Commentary document. The ten-year return annual freezing index was calculated using the mean annual freezing index value and recommendations outlined in the Canadian Foundation Engineering Manual (CFEM 5e). The fifty-year return annual freezing index was taken from Figure K-5 of the National Building Code of Canada (2020)

Commentary document. Factors such as snow cover, vegetation at surface, soil type and groundwater conditions can all significantly impact the depth of frost penetration. The predominant soil type on the project site is fat clay.

	Period			
Parameter		10-Year Return	50-Year Return	
Annual Air Freezing Index (°C-days)	1825	1875	2375	
Estimated Frost Penetration (Fat Clay Subgrade) – gravel surface, no snow cover (m)	1.9	2	2.5	
Estimated Frost Penetration (Fat Clay Subgrade) – grass with snow cover (m)	1.7	1.9	2.2	

Table 14: Frost Penetration Depth

It is the responsibility of the design team to select an adequate frost penetration depth to be incorporated into the design.

6.2.2 Frost Susceptibility

The qualitative frost susceptibility of a soil is typically assessed using guidelines developed by Casagrande (1932) based on the percentage by weight of the soil finer than 0.02 mm, and the Plasticity Index. The classification system has been adapted by the U.S. Army Corps of Engineers and the Canadian Foundation Engineering Manual (2023). Soils are classed as F1 through F4 in order of increasing frost susceptibility.

The soils (clay and silt) encountered during the geotechnical investigation fall mostly within the frost groups F3 and F4. The F3 group has high to very high susceptibility to frost and F4 has very high susceptibility. Frost susceptibility has been assigned to the encountered soil type and is summarized in **Table 15**.

Table 15: Frost Susceptibility

Soil Unit	USCS Soil Type	Frost Group	Percentage finer than 0.02 mm, by weight	PI	Frost Susceptibility
Clay/ Clay fill	CL, CH	F3	-	>12	High to very high susceptibility
Silt	ML	F4	-	-	very high susceptibility

Source: Canadian Foundation Engineering Manual (CFEM, 5e), Chapter 14 Frost Action

6.3 Cell Slope Stability Analysis

The analysis and recommendations provided were based on the information acquired from the geotechnical investigation and from review of the KGS geotechnical report titled, "Brady Road Resource Management Facility Cell Design and Master Plan Geotechnical Investigation and Stability Assessment for Landfill Area A Development – Final" (KGS Group, 2019).

6.3.1 Cell Design Details

The development of the landfill will begin at the southeast corner of area B. AECOM understands that Cell 35 (located in the south part of Area B) will be one of the first cells that will be constructed. The design details are presented with two scenarios which includes the CoW Preferred Design (Option 1) and the 60-meter Waste Pile Design (Option 2).

Cell 35 was modeled to determine the stability analysis. The AECOM surveying team provided the elevations being used in the model.

A summary of the preliminary design details are as follows:

6.3.1.1 CoW Preferred Design (Option 1):

- Prairie level = 233.5 m
- Depth of excavation = 3.0 to 4.5 m
- Height of waste above original grade = 30 m
- Slope of excavation and waste = 3H:1V
- Thickness of standard clay cap= 0.85 m
- Containment berm from prairie level with a top of berm elevation of 234.5 m or 235.5 m (provided by AECOM's preliminary design team)

6.3.1.2 60-meter Waste Pile Design (Option 2)

- Prairie level = 233.5 m
- Depth of excavation = 3.0 to 4.5 m
- Height of waste above original grade = 60 m
- Slope of excavation and waste = 3H:1V
- Thickness of standard clay cap= 0.85 m
- Containment berm from prairie level with a top of berm elevation of 234.5 m or 235.5 m (provided by AECOM's preliminary design team)

6.3.2 Slope Stability Methodology

The stability assessment was conducted using GeoStudio software, specifically the two-dimensional limit-equilibrium slope stability program SLOPE/W, developed by Geoslope International Inc. The Morgenstern-Price method was used to evaluate potential slip surfaces and calculate factors of safety (FS) for both Option 1 and Option 2. The following methodologies were used to evaluate the slope stability models:

Groundwater Elevations:

- 1. 228.34 m ASL (provided by the hydrogeology team).
- 2. 229.34 m ASL (provided by the hydrogeology team to use as a design parameter, representing worst-case seasonal rise in the southeast corner of Area B, simulating spring conditions)

Excavation Scenarios:

• Evaluations were conducted at various excavation depths, with berm heights of 235.5 m and 234.5 m for each groundwater elevation.

Landfill Waste Scenario:

• CoW Preferred Design (Option 1) and 60-meter Waste Pile Design (Option 2) were analyzed for long-term conditions, with different excavation depths.

B-Bar Coefficient:

• A B-Bar coefficient of 0.6 was applied to account for excess porewater pressure during construction.

For the stability evaluation, the target factors of safety (FS) were set at 1.3 for short-term conditions (excavation scenarios) and 1.5 for long-term conditions (landfill waste scenarios). In this analysis, short term has been defined as approximately 6-months. It is our understanding it will take approximately 6-months to fill the cell from the bottom of the excavation to prairie level (approximate elevation, 233.5 m).

6.3.2.1 Soil and Waste Strength Parameters

Soil parameters used for slope stability analysis were estimated from soil index properties (particle size distribution and Atterberg Limits). The properties of waste were based on AECOM's prior experience. The estimated soil parameters used in the preliminary design are provided in **Table 16**.

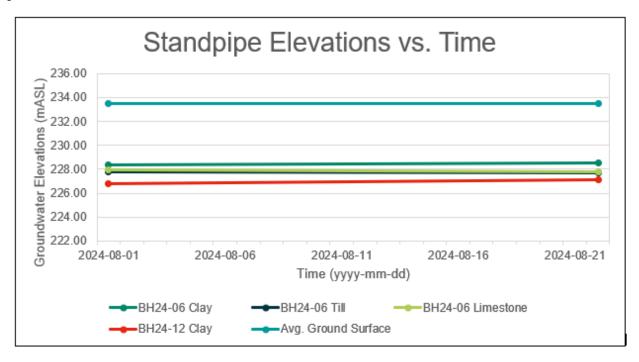

Material type	Unit Weight (kN/m ³)	Cohesion (kPa)	Friction Angle (°)
Landfill Waste	13.7	0	30
Standard Clay Cap	17.5	5	15
Fat Clay (CH)	17.5	5	15
Sandy Silty Clay (CL-ML) Till	21	0	30

Table 16: Soil & Waste Parameters

6.3.2.2 Groundwater

Groundwater readings were collected from various wells installed at different depths within Cell 35 to assess groundwater interactions in grey clay, till, and limestone. Detailed information about the wells is provided in **Appendix C. Figure 2** represents the groundwater level data obtained on August 1st, 2024, and August 22nd, 2024.

Notably, the monitoring of groundwater elevations should remain an ongoing program to track the stabilization of the groundwater table over time.

Figure 2: Graph of Groundwater Elevations Versus Time

The groundwater elevation of 228.34 meters (BH24-06 Clay) was chosen as a design groundwater level. Additionally, a 1-meter increase was applied to this value for slope stability analyses to simulate spring conditions, resulting in a groundwater elevation of 229.34 m ASL. Both 228.34 m ASL and 229.34 m ASL were provided by the hydrogeology team. The groundwater elevation of 228.34 meters (BH24-06 Clay) was selected as the highest reading based on a very short monitoring window from piezometer wells installed in the southeast corner of Area B.

6.3.3 Slope Stability Results

The factors of safety obtained from the GeoStudio Slope/W assessment for Excavation scenarios are presented from **Table 17** to **Table 19**. The results for the CoW Preferred Design (Option 1) and the 60-meter Waste Pile Design (Option 2) are presented in **Table 20**, and B-bar factor scenarios are shown in **Table 21** and **Table 22**.

Cell 35	Figure ID	Excavation Depth	Depth of Excavation + Height of Berm	Slope	Factor of Safety (FS)	Comments
Short Term – Max. Depth of Excavation	Fig. 1	3.0 m	5.0 m		1.58	- It is assumed that the water table is below the base of the excavation.
	Fig. 2	3.5 m	5.5 m		1.49	- As can be seen at a depth of 5 m, the FS is
	Fig. 3	4.0 m	6.0 m	3H:1V	1.44	not satisfied for short- term conditions.
	Fig. 4	4.5 m	6.5 m		1.34	- A drainage system that will keep the bottom excavation dry in the cell
	Fig. 5	5.0 m	7.0 m		1.24	will not improve the FS.

Table 17: Results of Excavation with 228.34 m Groundwater Elevation, Top of Berm 235.5 m

As shown in **Table 17**, the maximum depth of excavation is 4.5 m. This is to ensure that the FS satisfies the target FS at 1.30 for short-term conditions. A groundwater elevation of 228.34 m is assumed to be a representative level of Summer, Fall and winter conditions.

Table 18 Results of Excavation at 229.34 m Groundwater Elevation, Top of Berm 235.5 m

Cell 35	Figure ID	Excavation Depth	Depth of Excavation + Height of Berm	Slope	Factor of Safety (FS)	Comments
	Fig. 6	3.0 m	5.0 m		1.53	- It is assumed that the water table is below the
	Fig. 7	3.5 m	5.5 m	3H:1V	1.41	base of the excavation. - As can be seen at a
Short Term – Max. Depth of Excavation	Fig. 8	4.0 m	6.0 m		1.32	depth of 4.5 m, the FS is not satisfied for short- term conditions.
	Fig. 9	4.5 m	6.5 m		1.23	- A drainage system that will keep the bottom
	Fig. 10	5.0 m	7.0 m		1.18	excavation dry in the cell will not improve the FS.

As shown in **Table 18**, the maximum depth of excavation is 4.0 m. This is to ensure that the FS satisfies the target FS at 1.30 for short-term conditions. A groundwater elevation of 229.34 m is representative of spring conditions.

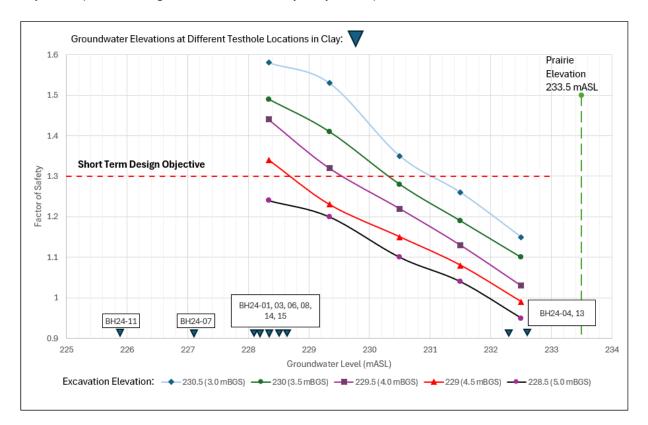
Cell 35	Figure ID	Excavation Depth	Depth of Excavation + Height of Berm	Slope	Factor of Safety (FS)	Comments
	Fig. 11	3.0 m	4.0 m		1.85	- It is assumed that the water table is below the
	Fig. 12	3.5 m	4.5 m	3H:1V	1.66	base of the excavation.As can be seen, all FS
Short Term – Max. Depth of Excavation	Fig. 13	4.0 m	5.0 m		1.52	short-term conditions are satisfied.
	Fig. 14	4.5 m	5.5 m		1.39	- A drainage system that will keep the bottom excavation dry in the cell
	Fig. 15	5.0 m	6.0 m		1.32	will not improve the FS.

Table 19 Results of Excavation at 229.34 m Groundwater Elevation, Top of Berm 234.5 m

As shown in **Table 19**, a reduction on the berm's elevation increases the resulting factor of safety. All the excavations depth pass for short-term conditions with a groundwater elevation of 229.34 m for spring conditions. The designer should consider the top of the berm as 234.5 m.

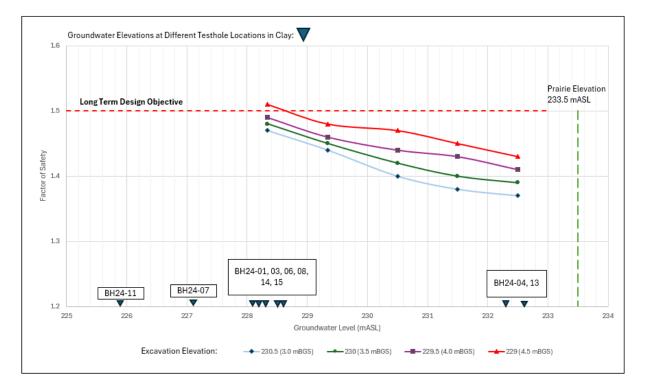
Table 20: Slo	pe Stability	v Results	of L	andfill \	Naste
					14010

Cell 35	Figure ID	Excavation Depth	Slope	Factor of Safety (FS)	Comments
	Fig. 16	3.0 m		1.47	- Half of the cell was analyzed, the horizontal footprint of the
CoW Preferred Design	Fig. 17	3.5 m		1.48	cell at a height of 30 m is approximately 120 m
(Option 1) – Long Term – Landfill	Fig. 18	4.0 m	3H:1V	1.49	- Minimum footprint will be 120 x 120 m
	Fig. 19	4.5 m		1.51	-Half of the cell was modeled and it is assumed that a mirror image will be identical.
	Fig. 20 3.0 m			1.41	- Half of the cell was analyzed, the horizontal footprint of the
60-meter Waste Pile	Fig. 21	3.5 m		1.42	cell at a height of 60 m is approximately 210 m
Design (Option 2) – Long Term – Landfill	Fig. 22	4.0 m	3H:1V	1.43	- Minimum footprint will be 210 x 210 m
	Fig. 23 4.5 m	1.43	 Half of the cell was modeled and it is assumed that a mirror image will be identical. 		


As shown in **Table 20**, Option 1 at excavation depth of 4.5 m satisfies the target FS of 1.5 for long-term conditions. Option 2 does not satisfy the Target FS at any excavation depth. The designer should consider reducing the waste pile height or reducing the slope. For details regarding the design outputs, refer for **Appendix E**.

6.3.3.1 Sensitivity Analysis

The results of the slope stability analysis presented in **Table 17 to 20** utilized the groundwater elevations provided/recommended by the hydrogeology team which is at 228.34 m ASL (BH24-06 Clay). For Cell 35, a groundwater elevation of 228.34 m ASL was recorded in BH24-06 approximately 5.16 m BGS. However, this reading may not represent the stabilized groundwater level within the clay layer. Additionally, elevated groundwater elevations were recorded in the piezometers installed in BH24-04, BH24-09 and BH24-13 (232.32 m ASL/1.24 m BGS, 232.98 m ASL/0.68 m BGS, and 232.82 m ASL/0.73 m BGS) respectively. These elevated groundwater elevations were recorded outside the footprint of Cell 35 but within Area B.


Furthermore, the local practice in Winnipeg clay is to assign a groundwater at 2.0 m BGS. Therefore, a sensitivity analysis was completed to study the impact of groundwater level on the FS. The sensitivity analysis is limited to the side slopes of the short-term and long-term of option 1 (30 m landfill waste) and option 2 (60 m landfill waste).

As part of the sensitivity analysis, groundwater depths of 1, 2, 3, 4.16 and 5.16 m (232.5 m ASL, 231.5 m ASL, 230.5 m ASL, 229.34 m ASL and 228.34 m ASL) below prairie elevation (233.5 m ASL) were evaluated. Various excavation depths were used in the analyses to assess changes as the groundwater level increased. For the sensitivity analysis the side slope was 3H:1V for both the berm and landfill waste. Lastly, a berm height of 2 m was incorporated in the model as well. **Figure 3** represents the sensitivity analysis for short-term excavation. **Figure 4** represents a sensitivity analysis for option 1 and **Figure 5** show the sensitivity analysis for option 2.

Figure 3: Factor of Safety for Various Excavation Depths and Groundwater Levels – Side Slope 3H:1V and 2 m Berm (Short Term)

As shown in **Figure 3**, an increase in groundwater elevation reduces the FS for the various excavation depths. For excavations ranging from 3.0 to 4.5 m BGS the target FS of 1.3 is met, provided the groundwater elevation remains at approximately 5.16 m BGS (228.34 m ASL). As seen in **Figure 3**, increases in the groundwater elevations have an negative impact on the short-term FS.

Figure 4: Factor of Safety for Various Excavation Depths and Groundwater Levels – Option 1 (30 m waste pile) With Side Slope 3H:1V and 2 m Berm (Long Term)

As shown in **Figure 4**, an increase in groundwater elevation reduces the FS for the various excavation depths. Only an excavation with a depth of 4.5 m BGS meets the target FS of 1.5, provided the groundwater elevation remains at approximately 5.16 m BGS (228.34 m ASL). As seen in **Figure 4**, increases in the groundwater elevations have an immediate negative impact on the long-term FS.

The long-term and short-term FS for side slopes of 3H:1V, a depth excavation of 4.5 m BGS, a 2 m berm, and a waste pile of 30 m in heights is considered acceptable, provided the groundwater elevation does not exceed 228.34 m ASL.

Figure 5: Factor of Safety for Various Excavation Depths and Groundwater Levels – Option 2 (60 m waste pile) With Side Slope 3H:1V and 2 m Berm (Long Term)

As shown in **Figure 5**, an increase in groundwater elevation reduces the FS for the various excavation depths. None of the excavation depths ranging form 3.0 m BGS to 4.5 m BGS met the target FS of 1.5. As seen in **Figure 5**, increases in the groundwater elevations have an immediate negative impact on the long-term FS.

A monitoring program and passive drainage system may be incorporated in the design to maintain the groundwater elevation at 228.34 m ASL. The monitoring plan must include regular readings of the groundwater from the installed piezometers and installing new groundwater piezometers within the clay layer along the footprint of the proposed Cell 35. The side slopes should also be checked regularly during the cell's construction and filling to ensure the slopes' stability.

Additional work (as recommended by the hydrogeology study- AECOM Draft report Area B Hydrogeology Report) to determine if the anomalous water levels observed in BH24-04, BH24-09 and BH24-13 are due to surface water infiltration into the wells may be required.

6.3.3.2 Recommendations During construction of the berm

Excess pore water pressure may temporarily develop in saturated soils when there is a change in applied load during berm construction. As the berm is constructed, the load applied to the soil beneath it increases, which can lead to the development of excess pore water pressure in the saturated soil.

The B-bar coefficient is a parameter that describes the relationship between changes in pore water pressure and changes in total stress during soil loading in saturated conditions. In this case, the B-bar coefficient is used to assess how the applied load influences the FS during berm construction. A target FS of 1.3 was selected for short term conditions with a B-bar coefficient of 0.6 based on AECOM's experience.

Winter construction is not recommended due to the challenges of compacting frozen clays, which can lead to poor compaction and potential instability. Spring construction should also be avoided, as melting snow can increase soil moisture, raising water levels and creating additional geotechnical concerns. The ideal time for construction is during the summer, when drier soil conditions allow for effective compaction and better dissipation of excess pore pressure provided that the design assumption for groundwater level of 228.34 m ASL (5.16 m BGS) is valid.

Cell 35	Figure ID	Excavation Depth	Depth of Excavation + Height of Berm	Slope	Factor of Safety (FS)	Comments
	Fig. 24	3.0 m	5.0 m		1.57	- It is assumed that the water table is below the
Short Term – Max. Depth of Excavation	Fig. 25	3.5 m	5.5 m	1.49	1.49	base of the excavation. - As can be seen at a
	Fig. 26	4.0 m	6.0 m	3H:1V	1.42	depth of 5 m, the FS is not satisfied for short- term conditions.
	Fig. 27	4.5 m	6.5 m		1.33	- A drainage system that will keep the bottom
	Fig. 28	5.0 m	7.0 m		1.24	excavation dry in the cell will not improve the FS.

Table 21: Results of Excavation with 228.34 m Groundwater Elevation, Top of Berm 235.5 m, B-Bar 0.6

As shown in **Table 21** the maximum depth of excavation is 4.5 m. This is to ensure that the FS satisfies the target FS at 1.30 for short-term conditions. However, if the groundwater level exceeds the design elevation of 228.34 m ASL (5.16 m BGS), the FS will fall below the design objective 1.3, as discussed and illustrated in **Figure 3**.

Cell 35	Figure ID	Excavation Depth	Depth of Excavation + Height of Berm	Slope	Factor of Safety (FS)	Comments
	Fig. 29	3.0 m	4.0 m		1.91	- It is assumed that the water table is below the
	Fig. 30	3.5 m	4.5 m		1.82	base of the excavation. - As can be seen, all the
Short Term – Max. Depth of Excavation	Fig. 31	4.0 m	5.0 m	3H:1V	1.67	FS are satisfied for short- term conditions.
	Fig. 32	4.5 m	5.5 m		1.52	- A drainage system that will keep the bottom excavation dry in the cell
	Fig. 33	5.0 m	6.0 m		1.40	will not improve the FS.

Table 22: Results of Excavation with 228.34 m Groundwater Elevation, Top of Berm 234.5 m B-Bar 0.6

As shown in **Table 22**, the Target FS for construction of the berm is satisfied at all excavation depths due to the reduction of 1 m height of the berm. The designer should consider the height when designing the berm for the landfill.

6.3.3.3 Recommended Side Slopes for Excavation

The recommended side slope for excavation is 3H:1V with an excavation depth of 3 to 4.5 m BGS (230.5 to 229 m ASL). This configuration offers the optimal factor of safety while maximizing the available space within the landfill. However, if the groundwater level exceeds the design elevation of 228.34 m ASL (5.16 m BGS), the FS will fall below the design objective 1.3, as discussed and illustrated in **Figure 3**.

6.3.3.4 Recommended Side Slopes for Landfill Waste

Option 1: The recommended side slope for the landfill waste is 3H:1V, with a landfill height of 30 meters and an excavation depth ranging from 4.0 to 4.5 meters.

Option 2: The slope stability analysis did not meet the required Target Factor of Safety (FS) at any excavation depth. The designer should consider reducing the height of the waste pile or adjusting the slope to improve stability.

6.4 Consolidation Analysis

The consolidation analysis and recommendations provided were based on information acquired from the geotechnical investigation, laboratory tests and AECOM's experience.

Based on the stratigraphy of area B which primarily consists of a clay layer, there will be settlement of cohesive soils including settlement of the waste material as well. The total settlement that could occur at the end of the lifespan will be calculated in the following section.

As no structures will be constructed on top of the waste hill, settlement will not be a significant factor in the findings and recommendations presented in this report.

6.4.1 Consolidation Cell Design Details

Cell 35 was modeled as AECOM recognizes this to be the next waste disposal cell development within Area B as specified in **Section 1.1**. The design details are presented with two scenarios; Option 1 features the CoW Preferred Design, while Option 2 is the 60-meter Waste Pile Design.

6.4.1.1 CoW Preferred Design (Option 1)

A summary of the preliminary design details are as follows:

- 30 m elevation above grade (prairie level)
- 3.0 to 4.5 m below grade
- 30 m waste thickness
- 13.7 kN/m³ unit weight of waste (provided by AECOM's environmental team)

6.4.1.2 60-meter Waste Pile Design (Option 2)

A summary of the preliminary design details are as follows:

- 60 m elevation above grade (prairie level)
- 3.0 to 4.5 m below grade
- 60 m waste thickness
- 13.7 kN/m³ unit weight of waste (provided by AECOM's environmental team)

6.4.2 Consolidation Methodology

6.4.2.1 General

The consolidation assessment was conducted using the geotechnical modeling software Settle3, developed by Rocscience Inc. of Toronto, Ontario. The software utilizes inputs including stratigraphy, groundwater depth, soil parameters and loading conditions to analyze settlement.

Settle3 performs immediate, primary, and secondary consolidation analyses for surface loads such as landfill waste. Data from the geotechnical investigation, laboratory tests, were integrated into Settle3 along with AECOM'S experience on past projects.

For the settlement analysis, which is only applicable to the clay layer, we used Boussineq stress computation method. Site data was gathered, including the thickness and properties of soil layers. The geometry and the loading conditions for the CoW Preferred Design (Option 1) and the 60-meter Waste Pile Design (Option 2) model were used in the design process to calculate settlement.

Using the design parameters specified in **Section 6.4.3** we conducted a settlement analysis for the clay layer at the southeast corner of Area B . This analysis included calculations for both option 1 and option 2.

6.4.2.2 Settlement of Landfill Waste

According to the Prediction of attenuation of landfill settlement rates with time (Coumoulos & Koryalos, 1997); prediction of the long-term settlement behaviour of a landfill closure influences the design and performance of the capping system and the successful future development of the site.

Attenuation of landfill long-term settlement is based on the observation where landfills that are placed rapidly, yield higher settlement rates than a landfill with a longer construction period. This settlement calculation was based on taking the factor for long term compression of solid waste under self weight (C_a). A standard rule of thumb is to estimate the settlement of the waste mass as 20%. $C_a = 0.0606$ is equivalent to a 20% settlement of the waste mass. It should be noted that a Design life of 20 years was selected based AECOM's previous experience. The following formula and parameters were used for the calculation of waste settlement:

$$\frac{\Delta H}{H} = C_a \log\left(\frac{t}{t_1}\right)$$

Where: CoW Preferred Design (Option 1)

 ΔH = The settlement of the landfill waste

- H = The total height of the landfill waste = 30 m
- C_a = Long term compression of solid waste under self weight= 0.0606
- t = 20 years (Design life of landfill)
- $t_1 \approx 0.01$ years (Beginning of design life)

and: 60-meter Waste Pile Design (Option 2)

 ΔH = The settlement of the landfill waste

- H = The total height of the landfill waste= 60 m
- C_a = Long term compression of solid waste under self weight= 0.0606

t = 20 years (Design life of landfill)

 $t_1 \approx 0.01$ (Beginning of design life)

6.4.3 Consolidation Parameters

The values obtained for the consolidation parameters were derived from the laboratory tests results of testhole BH24-09 at depths of 1.5 and 10.6 m below grade.

The estimated consolidation parameters are shown below in Table 23.

Depth Range (m)	Soil Type	Bulk Unit Weight kN/m ³	Elastic Modulus	Initial Void Ratio	Compression Index	Recompression Index	Preconsolidation Pressure (kPa)
			Es	eo	Cc	Cr	P _c '
n/a	Waste ¹	13.7	11200	n/a	n/a	n/a	n/a
0.76 - 4.3	Clay (CH) Brown	18.9	n/a	0.81	0.213	0.0852	90
4.3 – 15.0	Clay (CH) grey	15.19	n/a	1.797	1.125	0.2113	300
15.0 - 20.0	Glacial Till	20.59	135000	n/a	n/a	n/a	n/a

Note ¹: Bulk Unit weight for waste was provided by AECOM's environmental team

6.4.4 Consolidation Results

The analysis presented in **Appendix F** focuses on the total settlement associated with the final landfill waste height, with CoW Preferred Design (Option 1) and 60-meter Waste Pile Design (Option 2) heights being 30 m and 60 m above prairie level of 233.5 m ASL, respectively.

The results of the analysis for the loading cases represent the magnitude of settlement that will occur in the next 20 years of the landfill operations. The analyses accounts for settlement at different excavation depths (3.0 m to 4.5 m), compares settlement from edge of excavation to centre of waste pile settlement and shows the distance between the two (2) settlement points (edge of excavation and centre of waste pile).

Lastly, the table shows the total settlement of clay and waste at different excavation depths. It is important to note that the total settlement does not account for time, it represents only the total settlement. The results are presented in **Table 24.**

Figure ID	Excavation Depth	Edge of Excavation Settlement (Clay) (mm)	Centre of Waste Pile Settlement (Clay) (mm)	Differential settlement (mm)	Horizontal Distance, Between Edge of Excavation and Centre of Waste Pile (m)	Waste ^[1] Settlement (mm)	Total Settlement (Max Clay + Waste) (mm)	Comments
				CoW Preferre	d Design (Optio	n 1)		
Fig. 34	3.0 m	320	1786	1466	81.0		7786	Most settlement occurs in the
Fig. 35	3.5 m	331	1727	1396	79.5		7727	waste. The waste unit weight and
Fig. 36	4.0 m	352	1695	1343	78.0	6000	7695	consolidation properties are highly variable and hard to predict.
Fig. 37	4.5 m	375	1604	1229	76.5		7604	
			60-m	neter Waste P	ile Design (Opti	on 2)		
Fig. 38	3.0 m	320	2989	2669	171.0		14989	Most of the settlement occurs in the
Fig. 39	3.5 m	331	2887	2556	169.5	148	14887	waste. The waste unit weight and
Fig. 40	4.0 m	352	2792	2440	168.0	12000	14793	consolidation properties are highly
Fig. 41	4.5 m	375	2625	2250	166.5		14625	variable and hard to predict.

Table 24: Settlement of Option 1 and Option 2 Design

Note: [1] Waste settlement obtained from Section 6.4.2.2 (Coumoulo & Koryalos).

The settlement analysis for CoW Preferred Design (Option 1) shows a maximum differential settlement of 1466 mm, with the center of the waste pile settling 1786 mm and the edge at 320 mm settlement over a horizontal distance of 81 meters. The total maximum settlement for Option 1 is 7786 mm, including the variable waste, with the highest differential settlement occurring at an excavation depth of 3.0 meters.

For 60 m Waste Pile Design (Option 2), the maximum differential settlement at the center of the waste pile is 2,669 mm, with the edge remaining at 320 mm over a horizontal distance of 121 meters. The total maximum settlement in Option 2 is 14989 mm, with the highest differential settlement also occurring at an excavation depth of 3.0 meters.

As the excavation depth increases, the settlement at the center of the waste pile decreases, in both Option 1 and 2. The design team should consider the settlement data in **Table 24** when designing the leachate collection system and HDPE liner.

6.5 Waste Disposal Cell Liner

According to the 2016 Standards for Landfills in Manitoba, all clay-lined cells or leachate ponds must be designed to achieve a maximum hydraulic conductivity of 1×10^{-9} m/s. Additionally, the clay must have a minimum thickness of 1 meter, measured perpendicular to the slope, unless otherwise approved by the Director. This requirement is detailed on page 24 of the standards, which outlines the criteria for compliance.

As shown in **Table 8** in **Section 4.2**, four hydraulic conductivity tests were conducted. The maximum hydraulic conductivity found was 1.60x10⁻¹⁰ m/s in BH24-01, confirming compliance with the Standards for Landfills in Manitoba by remaining below the maximum hydraulic conductivity of 1x10⁻⁹ m/s. For detailed lab test results, refer to **Appendix D**.

6.6 Access Roads

Access roads are necessary for waste disposal vehicles to reach the landfill cells at the Area B project site. The current site has elevations from 233.3 m ASL to 235.06 m ASL. Based on AECOM's current understanding of the access roads currently in operation for Area A, both asphalt and gravel roads will be utilized within the proposed Area B project site. A flexible pavement design will likely be utilized for the pavement sections.

A bulk sample was combined using the available grab samples between 0.76 m BGS and 1.52 m BGS from all testholes, excluding any silt samples. A standard proctor and CBR test were performed on this bulk sample. The CBR was soaked at 95% maximum dry density. The standard proctor resulted in a maximum dry density of 1595 kg/m³ and an optimum moisture content (OMC) of 24.1%, and a CBR value was calculated at 1515 kg/m³.

6.6.1 Traffic

The pavement designs were completed following the American Association of State Highway and Transportation Officials (AASHTO) 1993 *Guide for the Design of Pavement Structure*. Part II of the design guide provides details on pavement design procedures for new construction or reconstruction.

The design of the access road structures is highly dependent upon the number and type of vehicles that will be driving on the roadways. Traffic loadings from different types of vehicles are then equated to the number of Equivalent Single Axle Loads (ESALs), which is defined by the summation of equivalent 18,000-pound single axle loads used to combine mixed traffic to design traffic for the design period. The estimated traffic distribution for gravel and asphalt roads is provided in **Table 25** and **Table 26**.

Design Parameters	Value				
Truck Percentage (%)	100%				
Distribution (%):					
2 & 3 axles	100%				

Table 25: Traffic Data – Gravel Road

Table 26: Traffic Data - Asphalt Road

Design Parameters	Value
Truck Percentage (%)	100%
Distribution (%):	
2 & 3 axles	100%

The asphalt and gravel areas are designed for the waste disposal vehicles and will be utilized to access each individual landfill cell via a perimeter access road. There, the main vehicles that will utilize the asphalt and gravel roads will be waste disposal vehicles and tandem end dumps. AECOM has estimated a truck percentage of 100%. Of the 100%, AECOM has estimated 100% are 2 & 3 axle trucks.

6.6.2 Pavement Design

The road design has been developed for a 20-year service life and an AADT of 324. To facilitate this future development, two additional test holes were drilled beneath the gravel road that separated the northern and southern sections of Area B.

- 20-year service life
- AADT of 324
- Reliability of 90%
- Standard Deviation of 0.44
- Serviceability (Initial = 4.4 and Terminal 2.2)

Additionally, the design included two lanes; one for incoming traffic and one for outgoing traffic.

Traffic loads were converted to an ESAL used in the AASHTO pavement design procedure. The design ESALs were based on the percentage of trucks in the total cumulative traffic loads over the length of the design life. The access road design parameters are presented in **Table 27** and **Table 28**.

Traffic	AADT: 324						
	Commercial Vehicles: 100%						
	Number of Lanes: 2						
	Annual Growth Rate: 1.0%						
	1,185,000 Design ESALS for 20-year design life						
Design Life	20 years (gravel)						
Reliability	90%						
Standard Deviation	0.44						
Serviceability	Gravel – Initial: 4.4						
	Terminal: 2.2						
Structural Layer Coefficients	New Structures						
	COW A Base 0.14						
	COW A Subbase 0.12						

Table 27: Pavement Design Parameters – Gravel Roads

Table 28: Pavement Design Parameters – Asphalt Roads

Traffic		AADT: 324					
	Commercial Vehicles: 100%						
		Number of Lanes: 2					
		Annual Growth Rate: 1.0%					
	1,185,000 Design ESALS for 20-year design life						
Design Life	20 years (asphalt)						
Reliability	90%						
Standard Deviation	0.44						
Serviceability	Asphalt – Initial:	4.4					
	Terminal: 2	2.2					
Structural Layer Coefficients	New Structures						
	Hot mix asphalt	0.42					
	COW A Base	0.14					
	COW A Subbase	0.12					

The design parameters noted above were used in the pavement design analysis. Pavement design options developed are presented below in **Table 29**.

Table 29: Pavement Recommendations

Pavement Design Options	Pavement Structure Details	Service Life (yrs)
Gravel Access Roads	• 100 mm – 28 mm granular A base	
	• 900 mm – 50 mm granular A subbase	
	Geogrid Class A	20
	 Separation/Filtration Geotextile separation thickness 	20
	1000 mm total thickness	
Asphalt Access Roads	• 125 mm – hot mix asphalt	
	• 100 mm – 28 mm granular A base	
	• 500 mm – 50 mm granular A Subbase	
	Geogrid Class A	20
	 Separation/Filtration Geotextile separation thickness 	20
	725 mm total thickness	

Based on these pavement design thicknesses, it is very likely that the silt (ML) layer will be breached.

Preparation of the subgrade and construction of the subbase and base course for the pavement areas should comply with the City of Winnipeg Standard Construction Specification CW 3110. Supply and installation of geogrid and geotextile should comply with the City of Winnipeg Standard Construction Specifications CW3135 and CW3130, respectively. Additional materials, if required to increase the final grade for the pavements, should consist of crushed subbase material. Sieve analysis and compaction testing of the granular fill materials are recommended to ensure the materials and compaction comply with the specifications.

6.6.3 Construction of Pavement on Various Subgrades

6.6.3.1 Constructing on Clay Subgrades

If clay or clay fill is encountered at the subgrade level (i.e., the bottom of the subbase layer) proceed as follows:

- Topsoil and organic material must be removed prior to pavement construction.
- Preparation of the subgrade and construction of the subbase and base course for the pavement areas should comply with City of Winnipeg Standard Construction Specification CW 3110.
- Install separation/filtration geotextile fabric over the subgrade in accordance with CW 3130 and Section 3.4 and install Geogrid Class A in accordance with CW 3135.
- Placement of 50 mm granular A subbase shall be in accordance with section 3.5 of CW 3110 and be done in lift thicknesses of 200 mm after compaction with at least 100% of standard Proctor Maximum Dry Density (SPMDD).
- Placement of granular A base course shall be in accordance with section 3.6 of CW 3310 and be done in lift thickness of 100 mm after compaction with at least 100% of standard Proctor Maximum Dry Density (SPMDD).

6.6.3.2 Constructing on Silt Subgrades

If silt is encountered at the subgrade level (i.e., the bottom of the subbase layer) proceed as follows:

- Topsoil and organic material must be removed prior to pavement construction.
- Preparation of the subgrade and construction of the subbase and base course for the pavement areas should comply with City of Winnipeg Standard Construction Specification CW 3110.
- Excavate to the required subgrade elevation.
- Proof roll for subgrade will not be required as silt is unsuitable for road construction and is expected to fail the proof roll test. The following steps shall be taken to address the silt:
- Method for soft or unsuitable subgrade materials:
 - Unsuitable materials must be excavated approximately 0.5 m below the design subgrade elevation. If the unsuitable soil continues deeper than the excavated 0.5 m, placement of a separation/filtration geotextile and geogrid class A is required.
 - Place a separation/filtration geotextile over the excavated subgrade.
 - Replace the excavated unsuitable material with 100 mm granular A subbase in two lifts compacting each lift.
 - Lift 1: 200 mm
 - Lift 2: 300 mm
- Install separation/filtration geotextile fabric over the subgrade in accordance with CW 3130 and Section 3.4 and Install Geogrid Class A in accordance with CW 3135.
- Placement of 50 mm granular A subbase shall be in accordance with section 3.5 of CW 3110 and be done in lift thicknesses of 200 mm after compaction with at least 100% of standard Proctor Maximum Dry Density (SPMDD).
- Placement of granular A base course shall be in accordance with section 3.6 of CW 3310 and be done in lift thickness of 100 mm after compaction with at least 100% of standard Proctor Maximum Dry Density (SPMDD).
- According to the logs found in **Appendix C**, silt layers are found in BH24-04, BH24-08, and BH24-14.

7. Quality Assurance and Quality Control

During construction, it is recommended that the contractor provides an approved quality control program (QC). AECOM would like to have the opportunity to provide the quality assurance program (QA). This program should include the testing of granular gradation, L.A. abrasion loss materials, standard proctor, and field density tests.

8. Design Review, Construction Monitoring and Testing

The geotechnical department should be retained to review the plans and specifications for conformance with the intent of this report. During construction, it is recommended that an AECOM representative be involved with the following tasks:

- Review of material testing data to confirm acceptability for placement
- Inspection of road construction
- Field density test during the placement and compaction of granular fill material
- Inspection during proof rolling of subgrade
- Inspection during proof rolling sub-base if field density test cannot be performed (CW 3110)

The purpose of the subgrade inspection services would be to provide AECOM the opportunity to observe the soil conditions encountered during construction, evaluate the applicability of the information presented in this report to the soil conditions encountered, and provide appropriate changes in design or construction procedures if conditions differ from those described herein. Additionally, the field density tests are conducted to verify that the fill materials have been compacted to the specified density standards.

9. References

UMA Engineering Ltd. (1987). Hydrogeologic Studies - Brady Road Landfill. Winnipeg: UMA Engineering Ltd (1987).

KGS Group (2019). Brady Road Resource Management Facility Cell Design and Master Plan Geotechnical Investigation and Stability Assessment for Landfill Area A Development – Final. Winnipeg: KGS Group (2019).

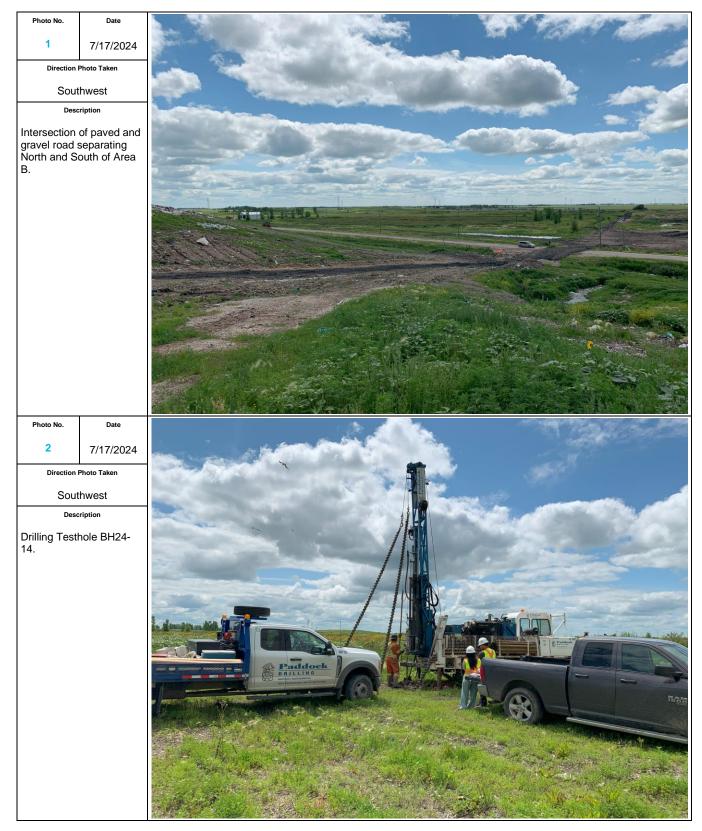
Canadian Commission on Building and Fire Codes, (2020). *National Building Code of Canada (NBCC) 2020*. National Research Council of Canada 2022.

The Canadian Geological Society. (2023). Canadian Foundation Engineering Manual 5th Edition.

Muni Budhu, (2010). Soil Mechanics and Foundations 3rd Edition.

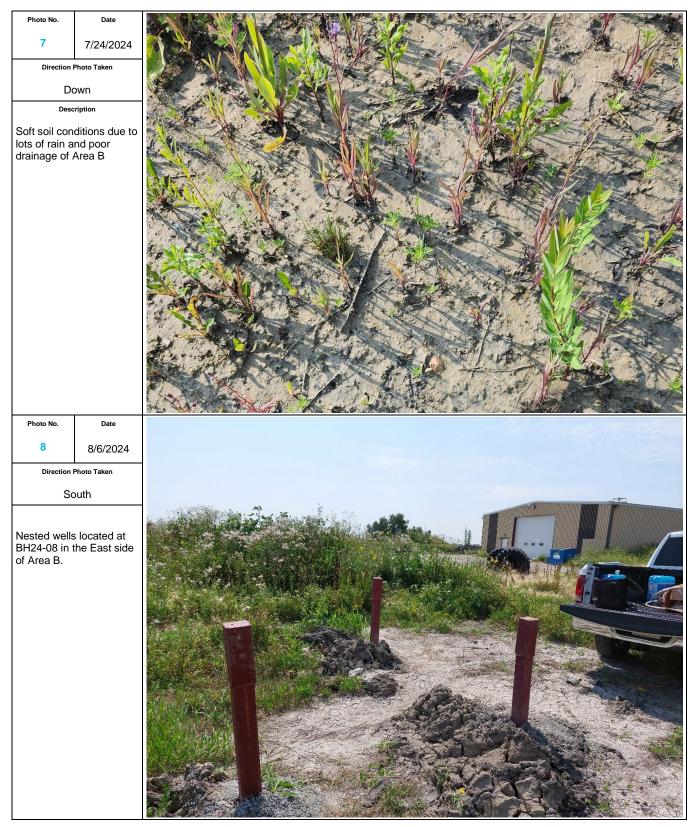
American Society for Testing and Materials, (2017). D2487 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classificiation System).

Coumoulos, D.G., & Koryalos, T.P. (1997). *Prediction of attenuation of landfill settlement rates with time.* International Society for Soil Mechanics and Geotechnical Engineering



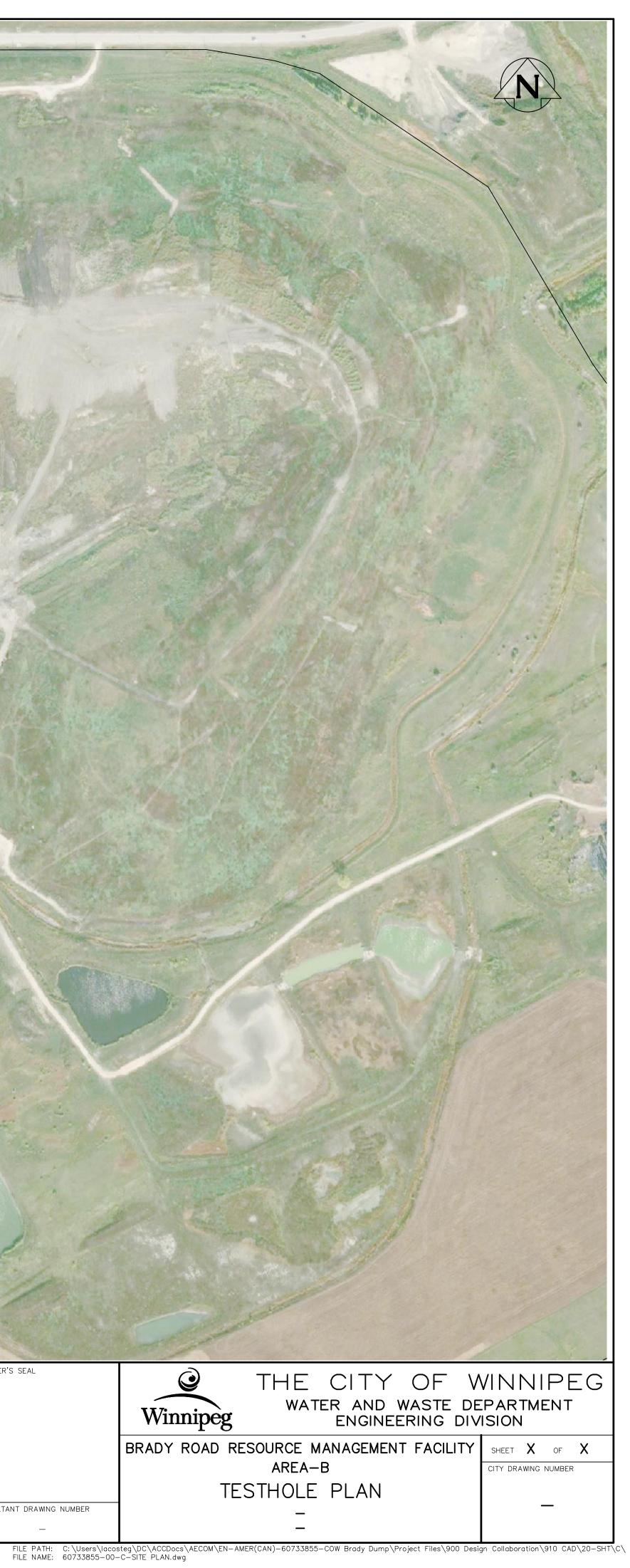
Site Photos

Project Name:	Brady Road Resource Management Facility	Site Location:	Area B
Client:	City Of Winnipeg	Project No:	60733855


Project Name: Brady Ro	oad Resource Management Facility	Site Location:	Area B
Client: City Of V	Vinnipeg	Project No:	60733855
Photo No. Date			
3 8/6/2024			
Direction Photo Taken	المتكامية الكماميين المستعين		
Northeast		Sand and the Sand State	
Description			
Nested wells located at BH24-06 in the Southeast corner of Area B			
Photo No. Date			
4 8/6/2024			
Direction Photo Taken			
South			
Well BH24-13 located on the east side of Area B surrounded lots of shrub.			

Project Nan		bad Resource Management Facility	Site Location:	Area B
Client:	City Of V	Vinnipeg	Project No:	60733855
Photo No.	Date			
5	7/24/2024			
Direction	Photo Taken			
N	orth			
Desc	cription		¥.	
Large shrub all around th corner of are	6 to 7 ft tall he Southeast ea B.			
				Massalassa
				na long and an
		REAL AREAS	- Maria - Shi	机的公正规定
			ME AN	
Photo No.	Date		Share	man al
6	7/24/2024	Sector 1		
Direction	Photo Taken		- 3	and the second
E	ast		Cold States	
Truck marks ground due	s on the to very soft		4.3	La Contra
wet soil.		ANT CONT.	E - march	* Contraction
		mental and a second		
			公 算 141 2 15 月1日	
		T X M TO LO LA CARA STATE	VALUE Nº 87	
				N. A. LAL
		A CARLES AND A CARLENT		

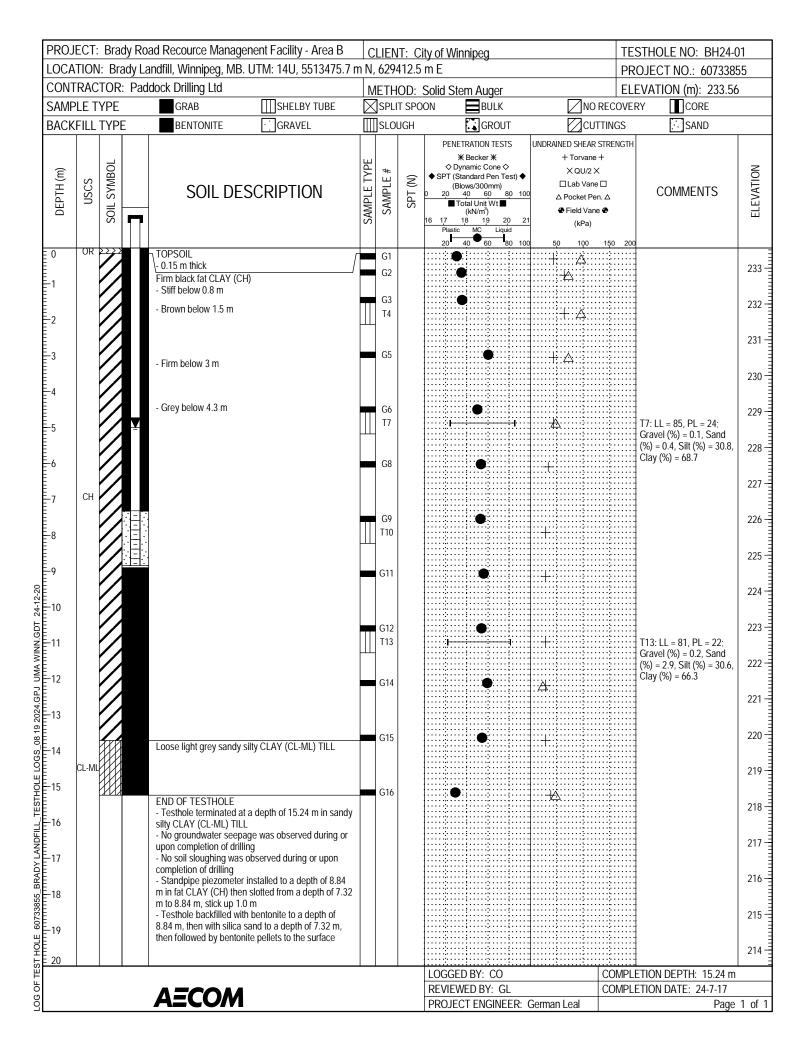
Project Name:	Brady Road Resource Management Facility	Site Location:	Area B		
Client:	City Of Winnipeg	Project No:	60733855		

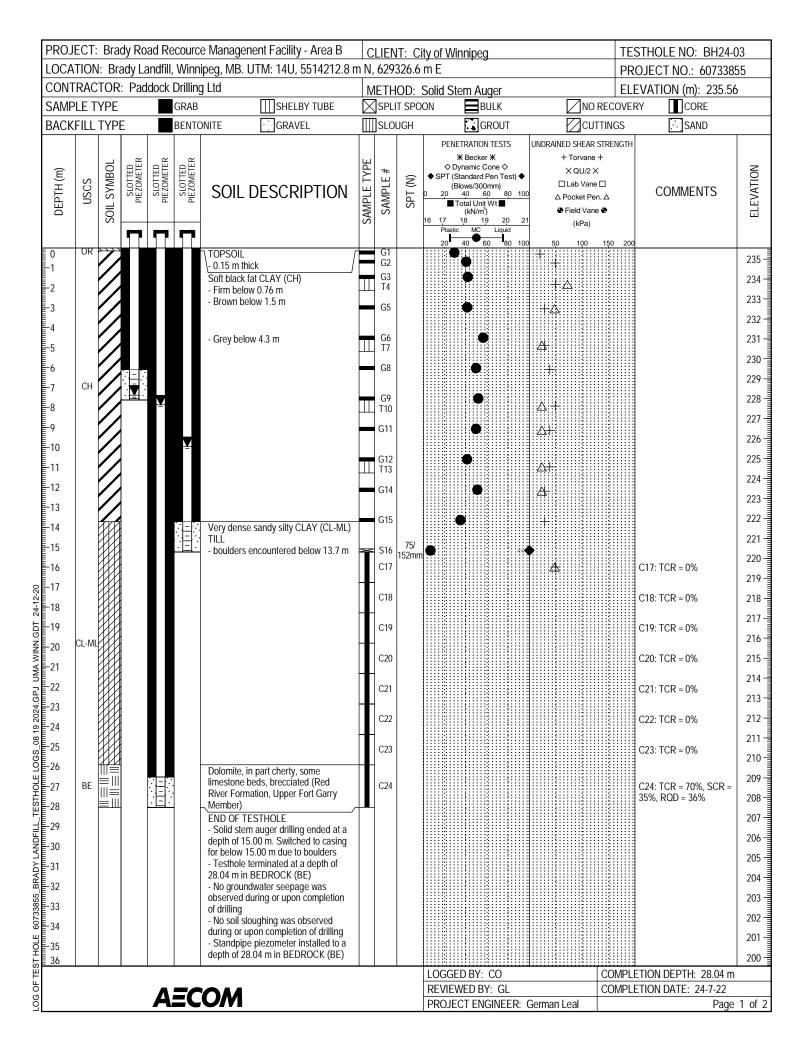


Testhole Location Plan

The seal of the se		
Y The second		
	E State And And And	
	10	E A
24-01	Mirshin -	
24-06		
A Start N		2/10

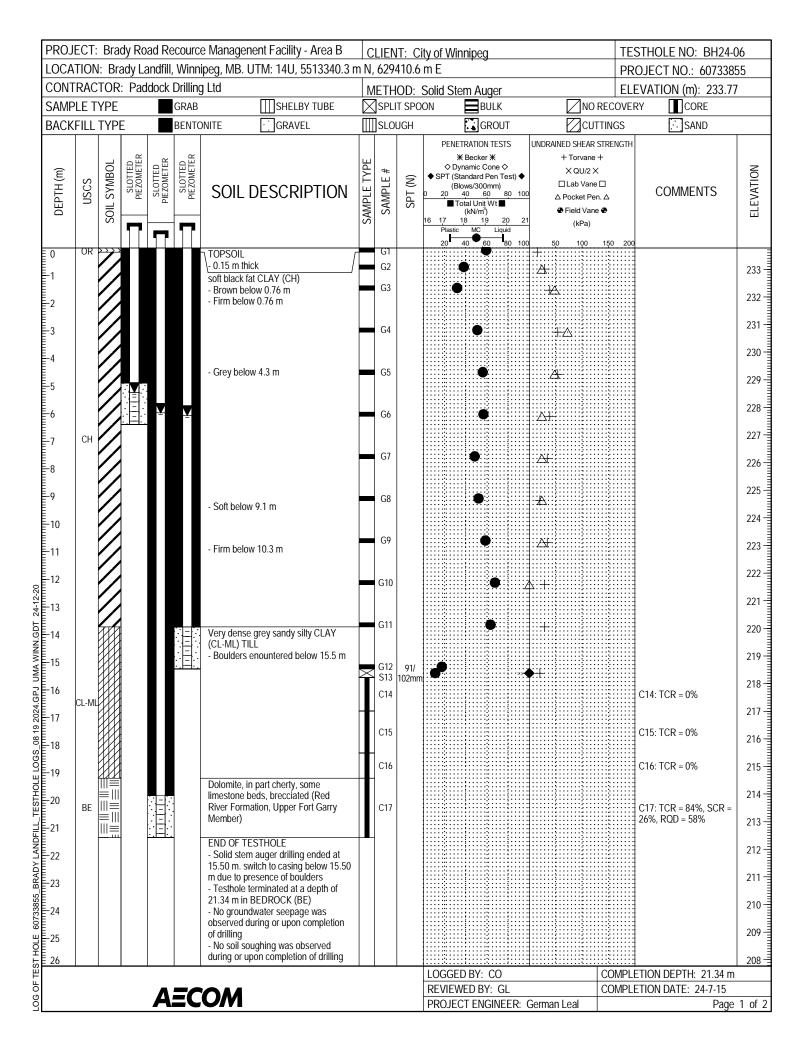
APPROVED STRUCTURES DATE	B.M. ELEV.						ENGINEER'S SEAL
STRUCTURES	JVED ELEV. JRES CONSTRUCTION DATE DATE DATE DATE DATE DATE DATE DATE	TRUCTION COMPLETION DATE: YYYY MM DD					
					DESIGNED BY	CHECKED BY	
OUND STRUCTURES AS					DRAWN BY	APPROVED BY	
NTEE IS GIVEN THAT ALL					SCALE:	RELEASED FOR	-
T. CONFIRMATION OF T LOCATION OF ALL					horizontal 1:3000 vertical –	CONSTRUCTION	CONSULTANT DRAWING NUMBER
NED FROM THE INDIVIDUAL DING WITH CONSTRUCTION.	NO.	REVISIONS	DATE	BY	DATE 2024 08 21	DATE	Y PPROVED Y ELEASED FOR ONSTRUCTION CONSULTANT DRAWING NUMBER ATE Tender No: XXX-XXXX FILE PATH: C:\Users\ld
					PLOT DATE: 2024 08 21	Tender No: XXX–XXXX CONTRACT NUMBER: 10	FILE PATH: C:\Users\I FILE NAME: 60733855-

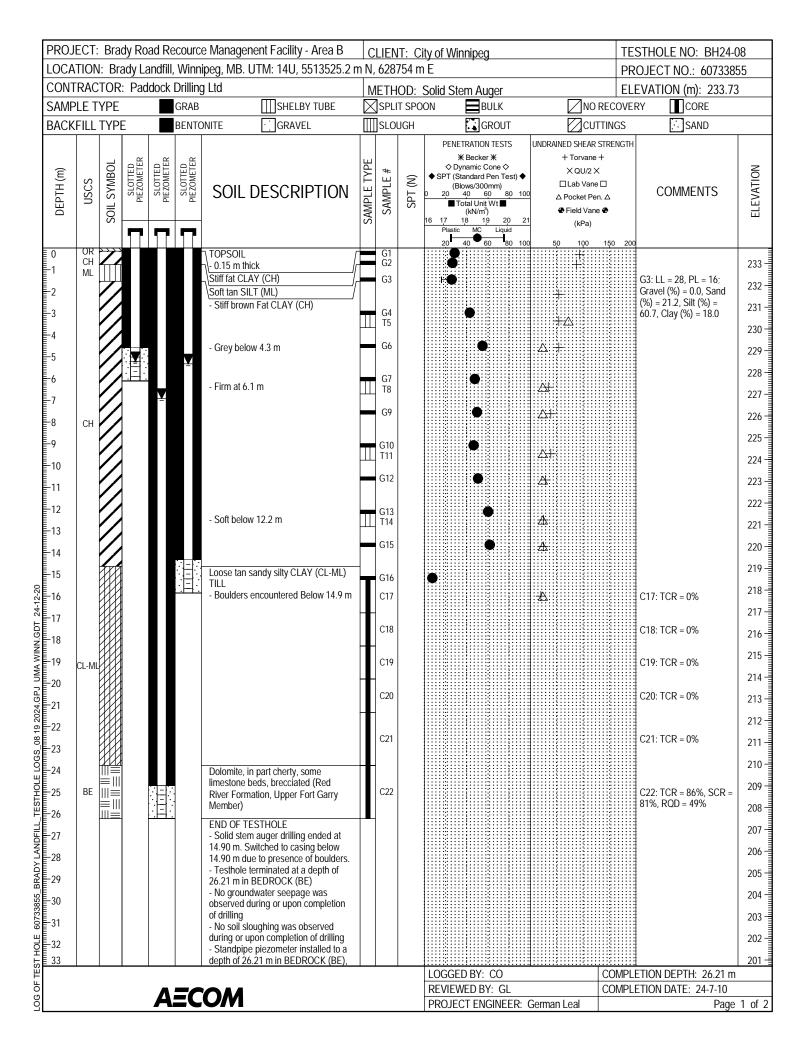




Testhole Logs

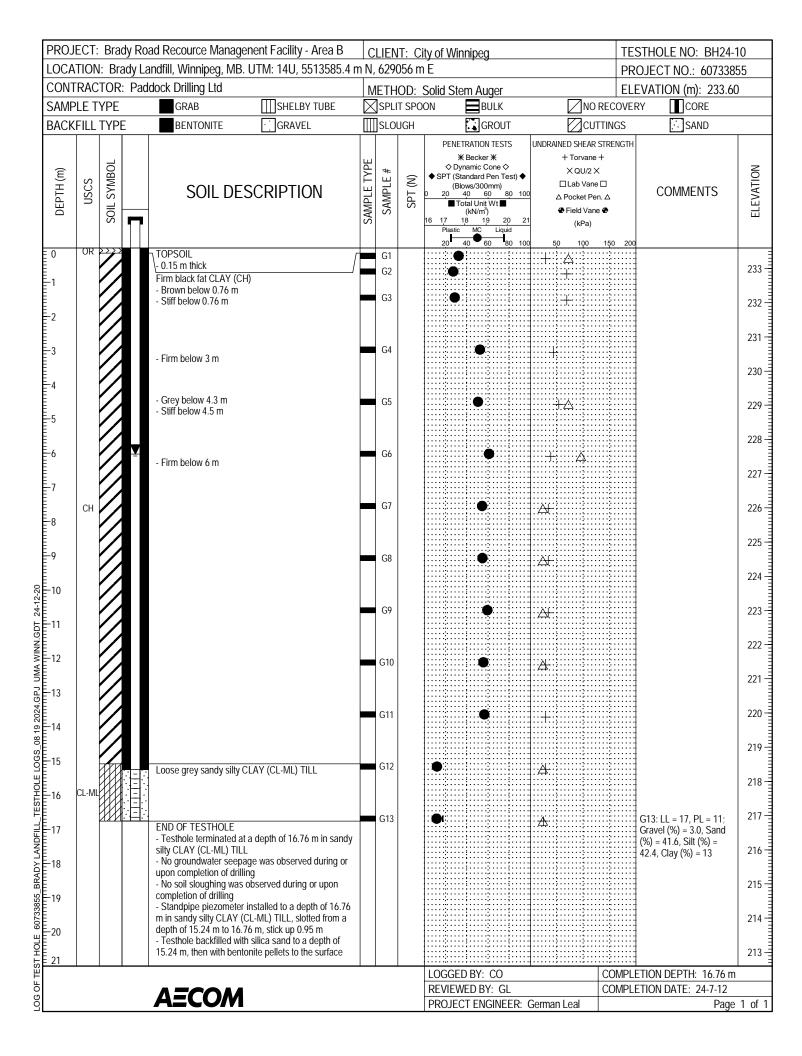
Prepared for: City of Winnipeg


			dy Road Recource Managenent Facility - Area				ty of Winnipeg		TESTHOLE NO: BH24-		
	OCATION: Brady Landfill, Winnipeg, MB. UTM: 14U, 5513047 m l CONTRACTOR: Paddock Drilling Ltd								PROJECT NO.: 60733855		
SAMP						<u>iod:</u> It spc	Solid Stem Auger	NO REC	ELEVATION (m): 233.4 OVERY	/	
DEPTH (m)	nscs	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR STRE + Torvane + X QU/2 X Lab Vane D Δ Pocket Pen. Δ Field Vane \clubsuit			
2	OR	2222	TOPSOIL		-		Plastic MC Liquid 20 40 60 80 10		200	_	
0	ML		- 0.15 m thick Soft tan SILT (ML)		G1 G2					2	
1			- Brown below 1.5 m		G3		•	A		2	
<u>)</u> }					G4		•	A+			
ļ			- Firm below 3 m							:	
5			- Grey below 4.3		G5		•				
)					G6		•				
,	СН						_				
}			- Soft below 7.6 m		G7						
)					G8		•				
0					G9						
1											
2					G10					:	
3 4 5 6			Loose grey poorly graded sandy silty CLAY (CL-ML) TI		G11		•	+ 4		:	
- 5	CL-ML				010					:	
6		LKN¥	END OF TESTHOLE - Testhole terminated at a depth of 15.24 m in sandy sil CLAY (CL-ML) TILL Crounder level was absorbed at a depth 14.00 m	ty	G12			<u>+</u> -Δ			
7			 Groundwater level was observed at a depth 14.00 m upon completion of drilling Soil sloughing was observed in the fat CLAY (CH) at a depth of 6.00 m 								
8			- Testhole backfilled with soil cuttings to ground surface				LOGGED BY: CO		MPLETION DEPTH: 15.24 m		
							REVIEWED BY: GL		MPLETION DEPTH: 15.24 m MPLETION DATE: 24-7-18		
			AECOM				PROJECT ENGINEER:		Page	1	


PROJE	CT:	Bra	dy Ro	ad Re	ecourc	e Managenent Facility - Area B	С	LIEN	T: Ci	ty of Winnipe	eq		TES	STHOLE NO: BH24-0	03
LOCATION: Brady Landfill, Winnipeg, MB. UTM: 14U, 5514212.8 m N, 6.											PRO	PROJECT NO.: 60733855			
CONTRACTOR: Paddock Drilling Ltd									THOD: Solid Stem Auger		x		EVATION (m): 235.56		
					GRAB		<u> </u>	-	T SPO		BULK		ECOVER		
BACKF	FILL	TYPE	Ξ		BENTC	ONITE GRAVEL	_Ш	SLO	JGH		GROUT	CUT		SAND	
DEPTH (m)	USCS	SOIL SYMBOL	SLOTTED PIEZOMETER	SLOTTED PIEZOMETER	SLOTTED PIEZOMETER		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATI	ker ₩ c Cone rd Pen Test) 60 80 100 nit Wt ■ m) 19 20 21 C Liquid	 Field Vane (kPa) 	-] 	COMMENTS	ELEVATION
36 -37						then slotted to a depth of 26.52 m to 28.04 m, stick up 0.98 m									199 -
-38						- Testhole backfilled with silica sand to a depth of 26.5 then followed by									198 -
-39						bentonite pellets to the surface for the									197 -
-40						BEDROCK (BE) piezometer - Standpipe piezometer installed to a									196 -
						depth of 15.24 m in sandy silty CLAY (CL-ML) TILL, slotted from a depth									195 -
-41						13.72 m to 15.24 m, stick up 0.80 m									194 -
-42						- Testhole backfilled with silica sand to a depth of 13.72 m then followed by									193 -
-43						bentonite pellets to the surface for the sandy silty CLAY (CL-ML) TILL									192 -
-44						- Standpipe piezometer installed to a									191 -
-45						depth of 7.62 m in fat CLAY (CH), slotted from a depth of 6.10 m to 7.62,									190 -
-46						stick up 0.80 m - Testhole backfilled with silica sand									189 -
-47						to a depth of 6.10 m then followed by									188 -
-48						bentonite pellets to the surface for the fat CLAY (CH)									
-49															187 -
-50															186 -
-51															185 -
-52															184 -
															183 -
-54															182 -
-55															181 -
56															180 -
50															179 -
-57															178 -
58															179 - 178 - 177 -
-59															176 -
-60															175 -
-61													3		176 - 175 - 174 - 173 - 172 -
-62															172 -
-63															172
-64															172
-65															170
-66															1/0-
-67															169 -
-68															168 -
-69															167 -
-70															166 -
71															171 - 170 - 169 - 168 - 167 - 166 - 165 - 165 -
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72															164 -
										LOGGED BY				TION DEPTH: 28.04 m	
				Α	<u>=C</u>	COM				REVIEWED PROJECT E			COMPLE	TION DATE: 24-7-22	2 of 2
				- 1		~				TRUJECI E	NOINEEK.	Jennan Ledi		raye	2 UI 2

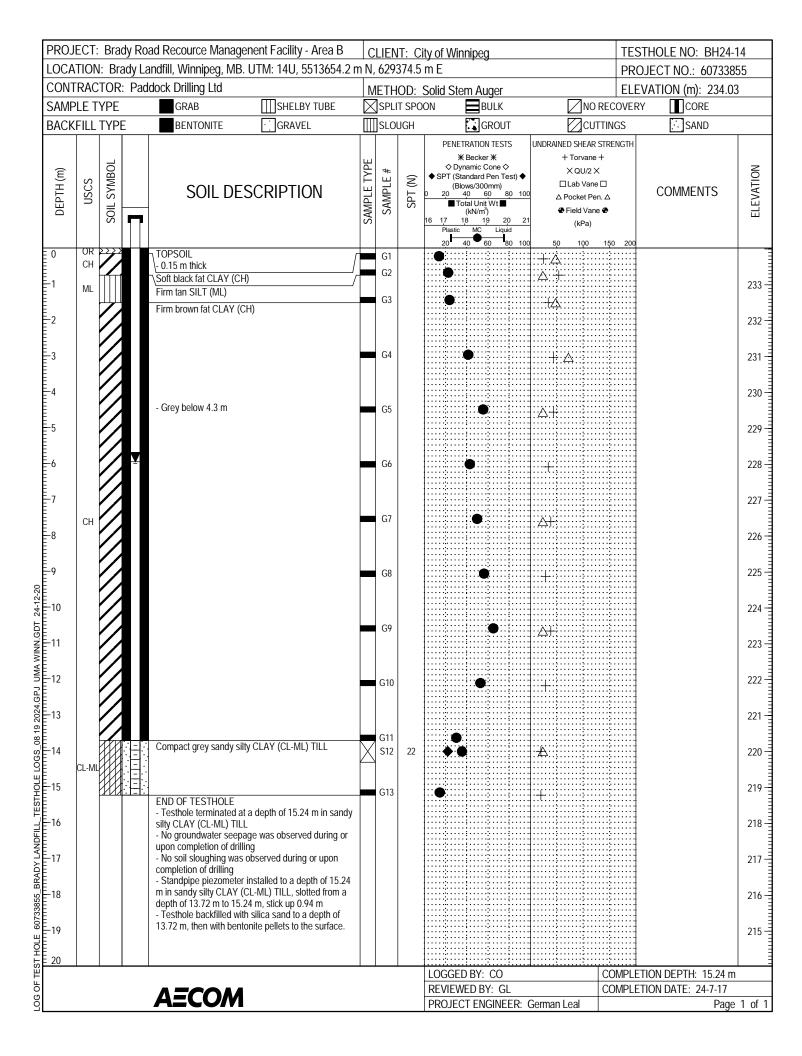
LOG OF TEST HOLE 60733855_BRADY LANDFILL_TESTHOLE LOGS_08 19 2024.GPJ UMA WINN.GDT 24-12-20

				d Recource Manage ndfill, Winnipeg, MB.	UTM: 14U, 5514057.2				i <u>ty of Wir</u> m E	nipeg					TESTHOLE NO: BH24- PROJECT NO.: 607338	
				lock Drilling Ltd					Solid Ste	m Auge	r				ELEVATION (m): 233.5	
	LET		-	GRAB	SHELBY TUBE			IT SPO						NO RECO		
		TYPE		BENTONITE	GRAVEL		SLO			GRO				CUTTINGS		
DEPTH (m)	USCS	SOIL SYMBOL		SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	*	RATION TE Becker # namic Cone andard Pen ows/300mm 40 60 ttal Unit Wt (kN/m) 8 19 MC Li	STS → Test) ←) 80 100 ■ 20 2 ⁻ iquid	0	INED SHE + Torv X QU □ Lab V △ Pocket ♥ Field V (kP	AR STRENG ane + /2 × 'ane □ : Pen. Δ /ane ⊕ a)	COMMENTS	
0	OR	3333		TOPSOIL			C1		20	40 60	80 100		0 10	0 150		+
	СН			- 0.15 m thick soft black fat CLAY (CH)		_/	G1					++	····· <u>A</u>			
	СП	\square					G2									2
				soft tan SILT (ML)			02			!		· · · · · · · · · · · · · · · · · · ·		·····		
1	ML										••••			•••••	••••	
			-				G3									
				Firm brown fat CLAY (CI	Н)		63				•••••••	· : A- :		·····		2
2														•••••		
														·····		
										•••••	••••		•••••	•••••		2
							CA								· · · ·	
3							G4					+.		·····		
										·····						
										·····	••••••••			·····		
											··••••••••••••••••••••••••••••••••••••			•••••		
1														•••••		
				- Grey below 4.3 m										····		
	СН	\square					G5									2
														••••••		
5																
											••••••••			·····		
Ď] - []				G6			•		· · · · + ·				
			日計													
			日日							·····				·····		2
,			日日													
'			目:							·····						
			目:											····		
			EI:	END OF TESTHOLE			G7				•••	· · A-				2
2				- Testhole terminated at	a depth of 7.62 m in fat					····				••••••		
נ				CLAY (CH) - No groundwater seepa	ge was observed during or											
				upon completion of drillin - No soil sloughing was of	ng											
				completion of drilling						·····	•••••••			·····		2
.				 Standpipe piezometer i m in fat CLAY (CH), slott 	installed to a depth of 7.62 ed from a depth of 6.1 m to											
7				7.62 m, stick up 1.0 m												
				 restnore backfilled with 6.1 m, then with bentonit 	silica sand to a depth of e pellets to ground surface									·····		
																2
10											<u></u>			<u> </u>		
									LOGGEI						PLETION DEPTH: 7.62 m	
				ΑΞϹΟΜ					REVIEW	ED BY:	GL			COM	PLETION DATE: 24-7-18	


CONTRA SAMPLE BACKFIL (E) HI dag (E) HI dag 26 27 28 28 29	ACT E TY LL T	OR: PE YPE	Pade	dock [y Ltd	TM: 14U, 5513340.3 n	M	IETH	OD: T SPO UGH	Solid Ster DN PENETF	BULK GROUT RATION TESTS Becker ₩ amic Cone ◊	NO RE	ELEV COVERY	DJECT NO.: 6073385 VATION (m): 233.77 γ	7
SAMPLE BACKFIL (m) HLd30 26 -27 -28 -29	E TY LL T	PE YPE			GRAB BENTC	SOIL D	GRAVEL		SPLI SLO	T SPO UGH	ON PENETI *	BULK GROUT RATION TESTS Becker ₩ amic Cone ◊	UNDRAINED SHEAR STF + Torvane +	ECOVERY	Y CORE	
26 27 29	LL T	YPE			BENTC	Soil D	GRAVEL		SLOI	UGH	PENETF *	GROUT RATION TESTS Becker ₩ amic Cone ◊	UNDRAINED SHEAR STF + Torvane +	NGS		
26 27 28 29				_		Soil D			#		PENETF	RATION TESTS Becker ₩ amic Cone ◇	UNDRAINED SHEAR STF + Torvane +			
27 28 29						Standning r		S	SAN	SPT (N)	(Blov 0 20 4 ■ Tot 16 17 18 Plastic	ndard Pen Test) ♦ ws/300mm) 0 60 80 100 al Unit Wt ■ (kN/m ³)	□ Lab Vane □ △ Pocket Pen. ∠ � Field Vane � (kPa)	2	COMMENTS	
-30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -44 -45 -46 -47 -48 -49						depth of 21.3 slotted from a 21.34 m, sticl - Testhole ba to a depth of bentonite pel BEDROCK (I - Standpipe p depth of 15.2 (CL-ML) TILL of 13.72 m to - Testhole ba to a depth of bentonite pel sandy silty CI - Standpipe p depth of 6.40 slotted from a m, stick up 0. - Testhole ba to a depth of	4 m in BEDROCK (BE), a depth of 19.81 m to k up 0.65 m ckfilled with silica sand 19.81 m, then with lets to the surface for the BE) jezometer installed to a 4 m insandy silty CLAY then slotted to a depth 15.24 m, stick up 1.05 m ckfilled with silica sand 13.72 m, then with lets to the surface for the LAY (CL-ML) TILL jezometer installed to a m in fat CLAY (CH), a depth of 4.88 m to 6.40 93 m ckfilled with silica sand 4.88 m, then with lets to the surface for the									2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-50																1
51																
<u>~~ </u>										1	LOGGED	BY: CO	C	OMPLET	TION DEPTH: 21.34 m	
				Λ.	=^	ЮM					REVIEW	ED BY: GL			TION DATE: 24-7-15	

V C C C C Image: Constraint of the state state of the state of the state state of the state state of the	PROJ	ECT:	Bra	dy Ro	ad Re	ecourc	e Managenent Facility - Area B	С	LIEN	T: Ci	ty of Winnipeq		TES	STHOLE NO: BH24-0)8
AMPLE TYPE GRAB IIISHELBY TUBE SPLIT SPOON BULK NO RECOVERY ICORE ACKFILL TYPE BENTONITE GRAVEL IIISLOUGH GROUT CUTTINGS SAND IIII GRAD SOIL DESCRIPTION IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				5							J I U		PR	OJECT NO.: 6073385	55
ACKFILL TYPE BENTONITE GRAVEL Solution					ldock		,								8
Image: Second	SAMP	LE T	YPE			GRAB									
Image: Sign of the state of the surface for the state of the stat	BACK	FILL	TYP	E		BENTO	DNITE GRAVEL		SLO	JGH	GROUT		INGS	SAND	
14 10 10 26,21 m, slick up 0.95 m 19 15 10 a deph of 24,49 m, then with 19 16 11 15 19 17 15 15,85 m is sandy slity CLAY 19 18 14.33 m to 15,85 m is sandy slity CLAY 19 19 10 15,85 m is sandy slity CLAY 19 19 14.33 m to 15,85 m, slick up 0.95 m 19 10 a depth of 14,33 m, then with 19 10 a depth of 14,33 m, then with 19 10 a depth of 14,33 m, then with 19 10 a depth of 14,33 m, then with 19 11 a depth of 14,33 m, then with 19 12 m, slick up 0.95 m 19 13 - Testhole backfilled with silica sand 19 14 a depth of 4,57 m, then to 6.10 m, m, slick up 0.95 m 19 13 - Testhole backfilled with silica sand 19 14 bentonite pellets to the surface for the far CLAY (CH), 18 16 18 18 17 a deph of 4,57 m, then with 18 18 18 18 19 18 18 19 18 18 19 18	DEPTH (m)	NSCS	SOIL SYMBOL	SLOTTED	SLOTTED	SLOTTED PIEZOMETER		SAMPLE TYPE	SAMPLE #		# Becker #	+ Torvane + X QU/2 X □ Lab Vane □ Δ Pocket Pen. ♥ Field Vane € 1 (kPa)]		ELEVATION
34 1 17 35 1 17 36 1 17 38 1 17 39 1 17 30 1 17 33 1 17 34 17 17 36 1 17 36 1 17 33 1 17 34 17 17 36 1 16 36 1 16 36 1 17 36 1 17 37 17 17 38 1 17 39 1 17 44 17 17 44 17 16 56 1 16 56 1 16 56 1 16 56 1 16 56 1 16 57 1 16 56 10 17	-35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53						bentonite pellets to the surface for the BEDROCK (BE) - Standpipe piezometer installed to a depth of 15.85 m in sandy silty CLAY (CL-ML) TILL, slotted from a depth of 14.33 m to 15.85 m, stick up 0.95 m - Testhole backfilled with silica sand to a depth of 14.33 m, then with bentonite pellets to the surface for the sandy silty CLAY (CL-ML) TILL - Standpipe piezometer installed to a depth of 6.10 m in fat CLAY (CH), slotted from a depth of 4.57 m to 6.10 m, stick up 0.95 m - Testhole backfilled with silica sand to a depth of 4.57 m, then with bentonite pellets to the surface for the								198 - 197 - 196 - 195 - 194 - 193 - 192 - 191 - 189 - 188 - 187 - 186 - 185 - 185 - 184 - 183 - 182 - 181 - 180 -
LOGGED BY: CO COMPLETION DEPTH: 26.21 m REVIEWED BY: GL COMPLETION DATE: 24-7-10	-50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -63 -64 -65 <u>66</u>														180 179 178 177 176 175 174 173 172 171 170 169 168
A=COM REVIEWED BY: GL COMPLETION DATE: 24-7-10		•		-	•	÷		•							
					Λ	=^	юM						COMPLE		

LOG OF TEST HOLE 60733855_BRADY LANDFILL_TESTHOLE LOGS_08 19 2024.GPJ_UMA WINN.GDT_24-12-20


			-		nent Facility - Area B UTM: 14U, 5513503.2					/innipeg				THOLE NO: BH24-0 JECT NO.: 607338	
				dock Drilling Ltd	01111.110,0010000.2					Stem Auger				VATION (m): 233.66	
SAMF				GRAB	SHELBY TUBE			IT SPC				NO RE	COVERY		0
		TYPE		BENTONITE	GRAVEL)UGH		GROU	Г			SAND	
DEPTH (m)	USCS	SOIL SYMBOL	-	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ ◆ SPT 0 20 16 17 Plas	XETRATION TEST XEBecker X Dynamic Cone ♦ (Standard Pen Te (Blows/300mm) 40 60 8 Total Unit Wt (kN/m) 18 19 20 tic MC Liqui	S I est) ◆ 0 100 0 21 id	JNDRAINED SHEAR STF + Torvane + × QU/2 × □ Lab Vane □ △ Pocket Pen. <i>2</i> ♥ Field Vane ♥ (kPa)	RENGTH	COMMENTS	
0	OR	2222		TOPSOIL		/	G1		20	40 60 8	30 100	50 100 1	50 200		
			Ţ	- 0.15 m thick Stiff black Fat CLAY (CF	4)		G2		•			·····;/····;			2
1				- Firm below 0.76 m			G3					· · · · · · · · · · · · · · · · · · ·			
2				- Stiff below 1.5 m - Brown below 1.5			T4								2
3				- Stiff below 3 m			G5			•		÷Δ			
1				- Grey Below 4.3 m			G6								
ō				- Firm below 4.5 m			T7								
þ	СН						G8			•		А	· · · · · · · · · · · · · · · · · · ·		
1							G9					· · · · · · · · · · · · · · · · · · ·			
}							T10					A	·····		
)							G11					+	·····		
0							G12						·····		
10 11 12							T13			••••			2 · · · · · · · · · · · · · · · · · · ·		
12			· - · ·	Loose grey sandy silty C	LAY (CL-ML) TILL	_	G14					+	·····		
13	CL-ML			- boulders encountered END OF TESTHOLE	deiow 15 m		G15			•		· · · · · · · · · · · · · · · · · · ·	> > >		
4				 Testhole terminated at silty CLAY (CL-ML) TILL 	ge was observed during or	-				· · · · · · · · · · · · · · · · · · ·			·····		
5				 No soil sloughing was completion of drilling Standpipe piezometer 	observed during or upon installed to a depth of 13.72	2				· · · · · · · · · · · · · · · · · · ·		+	· · · · · · · · · · · · · · · · · · ·		:
17				depth of 12.50 m to 13.7 - Testhole backfilled with	CL-ML) TILL, slotted from a 2 m, stick up 0.94 m silica sand to a depth of nite pellets to the surface					· · · · · · · · · · · · · · · · · · ·					
8															
										ED BY: CO EWED BY: GI				[ION DEPTH: 13.72 m [ION DATE: 24-7-11	1
				AECOM						ECT ENGINE				Page	1

			-	ad Recource Manage	UTM: 14U, 5513716.5			<u>NT: C</u> 283.1			npeg						THOLE NO: BH24- JECT NO.: 607338	
			-	Idock Drilling Ltd				HOD:			nΔu	ner					/ATION (m): 233.90	
SAMP				GRAB	SHELBY TUBE			IT SPC			В			Ĺ		COVERY		<u> </u>
		TYPE		BENTONITE	GRAVEL		SLC			-		ROUT	-	F			SAND	
DEPTH (m)	USCS	SOIL SYMBOL			SCRIPTION	SAMPLE TYPE	<u> </u>		♦ SI 0 : 16 1	PENETF	RATION Becker amic C ndard F vs/300 0 6 al Unit kN/m ³) 5 19 MC	ITEST Sone Pen Te mm) 0 8 Wt ■ 20 Liqui	5 st) ♦ 0 100 0 21	UNDRAINED +1 × □L △ Po ♥ Fi			COMMENTS	
0	OR	3333				_	G1			20 40	0 € 	0 8	0 100	50	100 15	0 200		+
				- 0.15 m thick Soft black fat Clay (CH)		/				<u>.</u>				· -+- · · · · · ·				
1				- Firm below 0.76 m			G2		 	•					·····			
2				- Brown below 1.5 m - Stiff below 1.5 m			G3			•								:
3				- Firm below 3.0 m			G4			· · · · · · · · · · · · · · · · · · ·				+ A				
1	СН			- Grey below 4.3 m			G5			· · · · · · · · · · · · · · · · · · ·				<u> </u>				
5																		
6							G6			· · · · · · · · · · · · · · · · · · ·				+ A				
7							G7											
В																		:
7				END OF TESTHOLE - Testhole terminated at	a depth of 9.14 m in fat		G8							· <u>A</u> +				
10				upon completion of drillin - No soil sloughing was of completion of drilling	ge was observed during or 1g observed during or upon installed to a depth of 9.14													
11				m in fat CLAY (CH), slot to 9.14 m, stick up 0.95 r - Testhole backfilled with 7.62 m then with benton	ed from a depth of 7.62 m n I silica sand to a depth of					·····								:
12																		
				1			1	1	_	GGED							TON DEPTH: 9.14 m	
				AECOM						/IEWE			-				TION DATE: 24-7-12	

OCA	TION	I: Bra	dy La	ad Recource Manager Indfill, Winnipeg, MB.				<u>NT: C</u> 9191.5			~9					STHOLE NO: BH24- COJECT NO.: 607338	
			Pad	dock Drilling Ltd						Stem /						EVATION (m): 233.38	8
SAMF	PLE T	YPE		GRAB	SHELBY TUBE			IT SPC	OON		BUL) RECOVE	RY CORE	
BACK	FILL	TYPE		BENTONITE	GRAVEL]SLC	UGH			GRC	DUT		Ωcι	JTTINGS	SAND	
DEPTH (m)	NSCS	SOIL SYMBOL	-	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 2 16 1	PENETRAT ★ Bec ◆ Dynami PT (Standa (Blows/2 0 40 ■ Total L (KN 7 18 Plastic M 20 40	ker 米 c Cone rd Per 800mm <u>60</u> Init Wt 'm') 19	e ◇ n Test) ✦ n) 80 10	<u> </u>	+ Torvan X QU/2 □ Lab Var △ Pocket P ● Field Va (kPa)	X ee □ en. Δ ne ⊕	COMMENTS	
0	OR	<u> </u>		TOPSOIL			0.1		·····	40			0 5	<u> </u>	150 200		+
1				- 0.15 m thick Firm black fat CLAY (CH) - Stiff below 7.62 m			G1 G2			•			+2 	7			2
I				- Brown below 1.5 m			G3									- - - -	2
2									·····								:
3				- Stiff below 3 m			G4							⊢ <u>∕</u>			
4	СН			- Grey below 4.3 m			G5		· · · · · · · · · · · · · · · · · · ·					+2			
5							G6									· · ·	
,				- Firm below 4.5 m									£	7		· · ·	
ſ				END OF TESTHOLE			G7			•			· A				2
}				Testhole terminated at a CLAY (CH) No groundwater seepag upon completion of drillin No soil sloughing was o completion of drilling Standpipe piezometer in m in fat CLAY (CH), slotte	e was observed during or g bserved during or upon nstalled to a depth of 7.62												
10				to 7.62 m, stick up 0.97 n - Testhole backfilled with 7.62 m, then with bentoni	silica sand to a depth of											· · ·	
										GED B						ETION DEPTH: 7.62 m	
				AECOM					RE	/IEWED	BY:	GL			COMPL	ETION DATE: 24-7-18	

			,	d Recource Manager ndfill, Winnipeg, MB. I	5					<u>Winnip</u> n E	eg				THOLE NO: BH24- DJECT NO.: 607338	
			-	lock Drilling Ltd						Stem A	Auger				VATION (m): 233.5	
SAMF	PLE TY	′PE		GRAB	SHELBY TUBE			IT SPO			BULK		NO	RECOVER		
ЗАСК	FILL T	YPE		BENTONITE	GRAVEL	Π	SLC	UGH			GROU	Т	Дсит	TINGS	SAND	
DEPTH (m)	USCS	SOIL SYMBOL		Soil des	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	PENETRATI	ker ¥ c Cone d Pen Te 00mm) 60 8 nit Wt m) 19 2 Liqu	> est) ♦ 80 100	UNDRAINED SHEAR + Torvane X QU/2 X □ Lab Vane △ Pocket Per ④ Field Vane (kPa) 50 100	+ 	COMMENTS	
0	OR ₹	<u>}}</u>		TOPSOIL \- 0.15 m thick			G1			•						
-1			Y	- Firm below 0.76 m			G2			•			·+··			2
2				- Brown below 1.5 m			G3			•			···+·· <u>A</u> ··			2
3				- Stiff below 3 m			G4			•			±∆.			2
ļ	СН															
ō				- Grey below 4.3 m - Firm below 4.5 m			G5				•		<u> </u>			2
5							G6				•		·····			
7									· · · · · · · · · · · · · · · · · · ·							
8				END OF TESTHOLE - Testhole terminated at a CLAY (CH)			G7						···+·			2
)				 No groundwater seepac upon completion of drillin No soil sloughing was o completion of drilling Standpipe piezometer in m in fat CLAY (CH), slott to 7.62 m, stick up 0.9 m 	bserved during or upon nstalled to a depth of 7.62											
10				- Testhole backfilled with 6.10 m, then with bentoni	silica sand to a depth of te pellets to the surface				_							
										GED BY					TION DEPTH: 7.62 m TION DATE: 24-7-18	
				AECOM									German Leal		Page	1

'PE TYPE	Paddock Drilling Ltd					7 m E			PROJECT NO.: 607338	
YPE							Stem Auger		ELEVATION (m): 233.6	7
	GRAB	SHELBY TUBE			t spo	ON	BULK			
	BENTONITE	GRAVEL		SLO	JGH		GROUT		IGS SAND	
SOIL SYMBOL		SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1; F	■ Total Unit Wt ■ (kN/m ³)	 		
	TOPSOIL ¬- 0.15 m thick			G1						
	Soft black fat CLAY (CH)			GI			•	-+		
	- Brown below 1.5 m - Firm below 1.5 m			G2 G3			•	-+A -+A		
				G4			•	·Δ-		2
	- Grey below 4.3 m			G5			•	·Δ+		
	CLAY (CH) - No groundwater seepag upon completion of drillin - No soil sloughing was o completion of drilling	e was observed during or g bserved during or upon		G6			•	· Δ+		2
	to 6.40 m, stick up 0.93 m - Standpipe backfilled wit	n h silica sand to a depth of							·····	
						<u> </u>				
		- Testhole terminated at a CLAY (CH) - No groundwater seepag upon completion of drillin - No soil sloughing was o completion of drilling - Standpipe piezometer in m in fat CLAY (CH), slotter to 6.40 m, stick up 0.93 m - Standpipe backfilled witt	 Testhole terminated at a depth of 6.40 m in fat CLAY (CH) No groundwater seepage was observed during or upon completion of drilling No soil sloughing was observed during or upon completion of drilling Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface. 	 Testhole terminated at a depth of 6.40 m in fat CLAY (CH) No groundwater seepage was observed during or upon completion of drilling No soil sloughing was observed during or upon completion of drilling Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface. 	END OF TESTHOLE - Testhole terminated at a depth of 6.40 m in fat CLAY (CH) - No groundwater seepage was observed during or upon completion of drilling - No soil sloughing was observed during or upon completion of drilling - Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m - Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface.	END OF TESTHOLE - Testhole terminated at a depth of 6.40 m in fat CLAY (CH) - No groundwater seepage was observed during or upon completion of drilling - No soil sloughing was observed during or upon completion of drilling - Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m - Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface.	END OF TESTHOLE - Testhole terminated at a depth of 6.40 m in fat CLAY (CH) - No groundwater seepage was observed during or upon completion of drilling - No soil sloughing was observed during or upon completion of drilling - Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m - Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface.	END OF TESTHOLE - Testhole terminated at a depth of 6.40 m in fat CLAY (CH) - No groundwater seepage was observed during or upon completion of drilling - No soil sloughing was observed during or upon completion of drilling - Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m - Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface. LOGGED BY: CO REVIEWED BY: GL	END OF TESTHOLE - Testhole terminated at a depth of 6.40 m in fat CLAY (CH) - No groundwater seepage was observed during or upon completion of drilling - No soil sloughing was observed during or upon completion of drilling - Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m - Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface. LOGGED BY: CO CC	END OF TESTHOLE - Testhole terminated at a depth of 6.40 m in fat CLAY (CH) - No groundwater seepage was observed during or upon completion of drilling - No soil sloughing was observed during or upon completion of drilling - Standpipe piezometer installed to a depth of 6.40 m in fat CLAY (CH), slotted from a depth of 4.88 m to 6.40 m, stick up 0.93 m - Standpipe backfilled with silica sand to a depth of 4.88 m, then with bentonite pellets to the surface. LOGGED BY: CO COMPLETION DEPTH: 6.40 m REVIEWED BY: GL COMPLETION DATE: 24-7-17

EXPLANATION OF FIELD & LABORATORY TEST DATA

The field and laboratory test results, as shown for each hole, are described below.

1. **EXPLANATION OF SOIL**

Each soil stratum is classified and described noting any special conditions. The Modified Unified Classification System (MUCS) is used. The soil profile refers to the existing ground level at the time the hole was done. Where available, the ground elevation is shown. The soil symbols used are shown in detail on the soil classification chart.

1.1 Tests on Soil Samples

Laboratory and field tests are identified by the following and are on the logs:

- γ_D <u>Dry Unit Weight</u>. Usually expressed in kN/m³.
- γ_T <u>Total (moist, wet, or bulk) Unit Weight</u>. Usually expressed in kN/m³.
- Cu <u>Undrained Shear Strength</u>. Usually expressed in kPa. This value can be determined by a field vane shear test and may also be used in determining the allowable bearing capacity of the soil.
- CPEN <u>Pocket Penetrometer Reading</u>. Usually expressed in kPa. Estimate of the undrained shear strength as determined by a pocket penetrometer.
- N <u>Standard Penetration Test (SPT) Blow Count</u>. The SPT is conducted in the field to assess the in-situ consistency of cohesive soils and the relative density of non-cohesive soils. The N value recorded is the number of blows from a 63.5 kg hammer free falling of 760 mm (30 in.) which is required to drive a 50 mm (2 in.) split spoon sampler 300 mm (12 in.) into the soil.
- Q_U <u>Unconfined Compressive Strength</u>. Usually expressed in kPa and may be used in determining allowable bearing capacity of the soil.

The following tests may also be performed on selected soil samples and the results are given on separate sheets enclosed with the logs:

- Grain Size Analysis
- Standard or Modified Proctor Compaction Test
- California Bearing Ratio Test
- Direct Shear Test
- Permeability Test
- Consolidation Test
- Triaxial Test

1.2 Natural Moisture Content

The relationship between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits for a sample should be compared to its natural moisture content and plotted on the Plasticity Chart to determine the soil classification.

Descriptive Term	Criteria
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually in coarse-grained soils below the water table

1.3 Grian Size Distrubtion

Laboratory grain size analyses provided by AECOM follow the following system. Note that, with the exception of those samples where a grain size distribution analysis has been completed, all samples have been classified by visual inspection. Visual inspection classification is not sufficient to provide exact gain sizing.

		SOIL CO	MPONENTS		
FRACT	TON	SIEVE S	SIZE (mm)		RCENTAGE BY WEIGHT OF MPONENTS
		PASSING	RETAINED	PERCENT	IDENTIFIER
GRAVEL	COARSE	75	19	F0 2F	
	FINE	19	4.75	50 – 35	AND
SAND	COARSE	4.75	2.00	25 20	
	MEDIUM	2.00	0.425	35 – 20	ADJECTIVE
	FINE	0.425	0.075	20 – 10	SOME
SILT (non	-plastic)			20 - 10	SOME
or		0	075	10 - 1	TRACE
CLAY (p	lastic)			10-1	TRACE
		OVERSIZE	MATERIALS		
	UNDED OR SUB-ROUNDED BBLES 75 mm TO 200 mm BOULDERS >200 mm			ANGULAR ROCK FRAGMENTS ROCKS > 0.75 m3 IN VOLUM	E

ISSMFE / USCS SOIL CLASSIFICATION

CLAY	SILT		SAND		GR	AVEL	COBBLES	BOULDERS		
		FINE	MEDIUM	COARSE	FINE	COARSE				
0.0	02 0.0	175 0.42	25 2	.0 4.	75	19 7	75 20	0		
	EQUIVALENT GRAIN DIAMETER IN MILLIMETRES									

1.4 Soil Compactness and Consistency

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests, or similar field and laboratory analysis. Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine-grained, cohesive soils.

The standard terminology to describe cohesionless soils includes the compactness condition as determined by the Standard Penetration Test 'N' value. These approximate relationships are summarized in the following tables:

ΑΞϹΟΜ

Table 1 Cohesive Soils

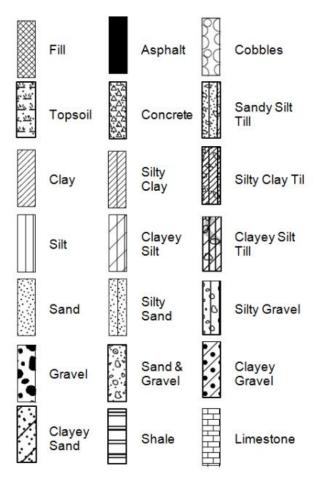
Consistency	SPT N (blows/0.3m)	C _u (kPa) approx.
Very Soft	<2	<12
Soft	2 - 4	12 - 25
Firm	4 - 8	25 - 50
Stiff	8 - 15	50 - 100
Very Stiff	15 - 30	100 - 200
Hard	>30	>200

Table 2 Cohesionless Soils

Compactness Condition	SPT N (blows/0.3m)
Very Loose	0 - 4
Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very Dense	>50

ΑΞϹΟΜ

	MAJOR DIVISION		UCS			TYPICAL DE	SCRIPTION		LABORATOR	Y CLASSIFICAT	TION CRITERIA
		CLEAN GRAVELS	GW			WELL GRADED GRAVELS, LITTLE OR NO FINES			$C_u = \frac{D_{_{60}}}{D_{_{10}}} > 4 C_c = \frac{(D_{_{30}})^2}{D_{_{10}} \times D_{_{60}}} = 1 \text{ to } 3$		
	GRAVELS (MORE THAN HALF COARSE GRAINS LARGER THAN 4.75 mm)	(LITTLE OR NO FINES)	GP		POORLY GRADED GRAVELS AND GRAVEL-SAND MIXTURES, LITTLE OR NO FINES				NOT MEETING ABOVE REQUIREMENTS		
		GRAVELS	GM			ILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES			CONTENT OF FINES EXCEEDS 12%		ATTERBERG LIMITS BELOW 'A' LINE Wp LESS THAN 4
COARSE GRAINED SOILS	AINED SOILS		GC		CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES			ND-			ATTERBERG LIMITS ABOVE 'A' LINE W _p MORE THAN 7
ARSE GI		CLEAN SANDS (LITTLE R NO	SW		WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES			S	$C_u = \frac{D_{60}}{D_{10}} > 6 C_c = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$		
Ő		FINES)	SP		POO	RLY GRADED S NO FI		E OR	NOT MEETI	NG ABOVE RE	QUIREMENTS
	SANDS (MORE THAN HALF COARSE GRAINS SMALLER THAN 4.75 mm) SANDS		SM		SILT	SILTY SANDS, SAND-SILT MIXTURES			CONTENT OF FINES EXCEEDS 12%		ATTERBERG LIMITS BELOW 'A' LINE Wp LESS THAN 4
		WITH FINES			CLAYEY SANDS, SAND-CLAY MIXTURES			Ŷ			ATTERBERG LIMITS ABOVE 'A' LINE W _P MORE THAN 7
	SILTS (BELOW 'A' LINE	W _L < 50	ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY				CLASSIFICATION IS BASED UPON PLASTICITY CHART (SEE BELOW)		
SIIC	NEGLIGIBLE ORGANIC CONTENT)	W _L > 50				INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS			WHENEVER THE NATURE OF THE FINE CONTENT HAS		
FINE GRAINED SOILS	CLAYS	W _L < 30				ORGANIC CLAYS OF LOW PLASTICITY,					
NE GRA	(ABOVE 'A' LINE NEGLIGIBLE ORGANIC CONTENT)	$30 < W_L < 50$	CI		INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS			5	NOT BEEN DETERMINED, IT IS DESIGNATED BY THE LETTER 'F'. E.G. SF IS A MIXTURE OF SAND WITH		
E	W _L > 50		СН	FAT CLAY			CLAYS	·	r, SILT OR CLAY		Y
	ORGANIC SILTS & CLAYS	W _L < 50	OL			ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Y	4		
	(BELOW 'A' LINE) HIGHLY ORGANIC SC	W _L > 50 9ILS	OH Pt			ANIC CLAYS OF HIGH PLASTICITY T AND OTHER HIGHLY ORGANIC STRONG COLOUR OR ODOUR, AND OFTEN FI				ND OFTEN FIBROUS	
	BEDROCK		BR			SOILS TEXTURE SEE REPORT DESCRIPTION					
	FILL		FILL		SEE REPORT DESCRIPTION						
8								SOIL	COMPONENTS	DEEMING	DANGES OF
20			СН	\nearrow		FRACTION		SIEVE	SIZE (mm)	PERCE WEIGHT	G RANGES OF NTAGE BY OF MINOR PONENTS
NDEX 40							r	PASSING		PERCENT	IDENTIFIER
NI XI 0						GRAVEL	COARSE	75	19	50 – 35	AND
PLASTICITY			·NUNE			SAND	FINE COARSE	19 4.75	4.75		├
28 F			MH				MEDIUM	2.00	0.425	35 – 20	Y
10						CT T (FINE	0.425	0.075	20 - 10	SOME
		ML				SILT (non-plastic) or CLAY (plastic)			0.075 10 - 1		TRACE
م_ 0	10 20 30 40 50 60 70 80 90 1					100 OVERSIZE MATERIALS					
NOTE: 1. BC	DUNDARY CLASSIFICAT		CHARACTERISTI	CS OF TV	VO	ROUNDED OR SUB-ROUNDED ANGULAR COBBLES 75 mm TO 200 mm ROCK FRAGMENTS BOULDERS >200 mm ROCKS > 0.75 m3 IN VOLUME					
	ROUPS ARE GIVEN GRO RAVEL MIXTURE WITH CL			VELL GRAD	ED	MODIFIED UNIFIED SOIL CLASSIFICATION SYSTEM					
						February 2022					


1.5 Sample Type, Symbols and Abbreviations

The depth, type, and condition of samples are indicated on the logs by the following symbols or abbreviations:

ΑΞϹΟΜ

Sample abbreviations:	Symbols:	
GS: Grab Sample		
BK: Bulk Sample	Grab	Bulk
NR: No Recovery		
ST: Shelby Tube		
SS: Split Spoon		
Core: Core Samples	No Recovery	Shelby Tube
FV: Field Vane		
PP: Pocket Penetrometer		
DCPT: Dynamic cone penetration test	Split Spoon	Core Sample

1.6 STRATA/Graphic Plot (Shall be Changed For Different Guidelines)

2. EXPLANATION OF ENVIROMENTAL SAMPLE

2.1 Contaminant Abbreviations

Contaminant Abbreviations	
BNAE	Base/neutral/acid extractables
BTEX	Benzene, toluene, ethylbenzene, xylenes
OCP	Organochlorine pesticides
MI	Metals and inorganics
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls
PHC	CCME petroleum hydrocarbons (fractions 1-4)
VOC	Volatile organic compounds (includes BTEX)
SO ₄	Water Soluble Sulphate Content

2.2 Water Soluble Sulphate Concentration

The following table, from CSA Standard A23.1-14, indicates the requirements for concrete subjected to sulphate attack based upon the percentage of water-soluble sulphate as presented on the logs. CSA Standard A23.1-14 should be read in conjunction with the table.

						Performance requirements		§,§§
		Water-soluble	Sulphate (SO4)	Water soluble sulphate (SO ₄) in recycled	Cementing	Maximum expansion when tested using CSA A3004-C8 Procedure A at 23 °C, %		Maximum expansion when tested using CSA A3004-C8 Procedure B at 5 °C, % †††
Class of exposure	Degree of exposure	sulphate (SO ₄)† in soil sample, %	in groundwater samples, mg/L‡	aggregate sample, %	materials to be used§††	At 6 months	At 12 months††	At 18 months‡‡
S-1	Very severe	> 2.0	> 10 000	> 2.0	HS** ,HSb, HSLb*** or HSe	0.05	0.10	0.10
S-2	Severe	0.20–2.0	1500–10 000	0.60–2.0	HS**, HSb, HSLb*** or HSe	0.05	0.10	0.10
S-3	Moderate (including seawater exposure*)	0.10-0.20	150–1500	0.20–0.60	MS, MSb, MSe, MSLb***, LH, LHb, HS**, HSb, HSLb*** or HSe	0.10		0.10

Table 3 Requirements for Concrete Subjected to Sulphate Attack*

*For sea water exposure, also see Clause 4.1.1.5.

⁺In accordance with CSA A23.2-3B.

‡In accordance with CSA A23.2-2B.

§Where combinations of supplementary cementing materials and portland or blended hydraulic cements are to be used in the concrete mix design instead of the cementing materials listed, and provided they meet the performance requirements demonstrating equivalent performance against sulphate exposure, they shall be designated as MS equivalent (MSe) or HS equivalent (HSe) in the relevant sulphate exposures (see Clauses 4.1.1.6.2, 4.2.1.1, and 4.2.1.3, and 4.2.1.4).

**Type HS cement shall not be used in reinforced concrete exposed to both chlorides and sulphates, including seawater. See Clause 4.1.1.6.3.

⁺⁺The requirement for testing at 5 °C does not apply to MS, HS, MSb, HSb, and MSe and HSe combinations made without portland limestone cement.

^{‡‡} If the increase in expansion between 12 and 18 months exceeds 0.03%, the sulphate expansion at 24 months shall not exceed 0.10% in order for the cement to be deemed to have passed the sulphate resistance requirement.

§§For demonstrating equivalent performance, use the testing frequency in Table 1 of CSA A3004-A1 and see the applicable notes to Table A3 in A3001 with regard to re-establishing compliance if the composition of the cementing materials used to establish compliance changes.

***Where MSLb or HSLb cements are proposed for use, or where MSe or HSe combinations include Portland-limestone cement, they must also contain a minimum of 25% Type F fly ash or 40% slag or 15% metakaolin (meeting Type N pozzolan requirements) or a combination of 5% Type SF silica fume with 25% slag or a combination of 5% Type SF silica fume with 20% Type F fly ash. For some proposed MSLb, HSLb, and MSe or HSe combinations that include Portland-limestone cement, higher SCM replacement levels may be required to meet the A3004-C8 Procedure B expansion limits. Due to the 18-month test period, SCM replacements higher than the identified minimum levels should also be tested. In addition, sulphate resistance testing shall be run on MSLb and HSLb cement and MSe or HSe combinations that include Portland-limestone cement at both 23 °C and 5 °C as specified in the table.

⁺⁺⁺If the expansion is greater than 0.05% at 6 months but less than 0.10% at 1 year, the cementing materials combination under test shall be considered to have passed.

2.3 Soil Corrosivity

The following table, from the Handbook of Corrosion Engineering (Roberge, 1999) indicates the

corrosivity rating can be obtained from the soil resistivity, presented on the logs.

Soil Resistivity (ohm-cm)	Corrosivity Rating	
>20,000	Essentially non-corrosive	
10,000 - 20,000	Mildly corrosive	
5,000 - 10,000	Moderately corrosive	
3,000 – 5,000	Corrosive	
1,000 - 3,000	Highly corrosive	
<1,000	Extremely corrosive	

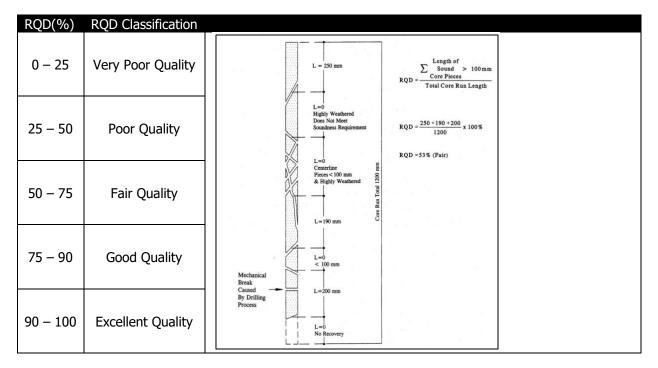
Table 4 Corrosivity Ratings Based on Soil Resistivity

3. HYDROGEOLOGICAL

The groundwater table is indicated by the equilibrium level of water in a standpipe installed in a test hole or test pit. This level is generally taken at least 24 hours after installation of the standpipe. The groundwater level is subject to seasonal variations and is usually highest in the spring. The symbol on the logs indicating the groundwater level is an inverted solid triangle ($\underline{\mathbf{v}}$).

4. **EXPLANATION OF ROCK**

4.1 General Description and Terms


General Description of Geotechnical Unit including: Quantitative description including rock type (s), percentage of rock types, frequency and sizes of interbeds, colour, texture, weathering, strength and general joint spacing

Total Core Recovery (TCR): Total length of core recovered expressed as percentage of core run length. **Solid Core Recovery (SCR):** Total length of solid full diameter core expressed as percentage of core run length.

Rock Quality Designation (RQD): Sum of lengths of solid core pieces longer than 100 mm expressed as percentage of core run length.

Fracture Index (FI): Number of fractures per meter of core.

4.2 Rock Quality Designation (RQD)

4.3 Classification of Strength

Grade	Description	Field identification	Approximate range of Uniaxial compression strength (MPa)
R0	Extremely weak rock	Indented by thumbnail	0.25-1.0
R1	Very weak rock	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	1.0-5.0

R2	Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	5.0-25
R3	Medium strong rock	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	25-50
R4	Strong rock	Specimen requires more than one blow of geological hammer to fracture it	50-100
R5	Very strong rock	Specimen requires many blows of geological hammer to fracture it	100-250
R6	Extremely strong rock	Specimen can only be chipped with geological hammer	>250

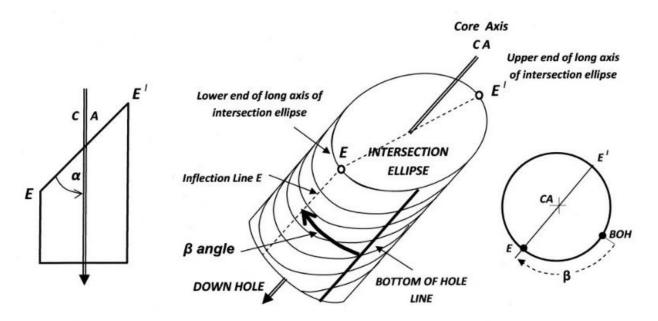
4.4 Classification of Weathering

Grade	Description	Field identification
W1	Fresh	No visible sign of rock material weathering; perhaps slight discolouration on major discontinuity surface
W2	Slightly Weathered	Discolouration indicates weathering of rock material and discontinuity surface. All the rock material may be discoloured by weathering and may be somewhat weaker externally than in its fresh condition
W3	Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
W4	Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
W5	Completely Weathered	All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact. All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but soil has not been significantly transported.
W6	Residual Soil	Residual Soil

4.5 Type of discontinuity

Symbol	Description
F	Fault
J	Joint
Sh	Shear
Fo	Foliation
V	Vein
В	Bedding

4.6 Spacing of discontinuity


Spacing Classification	Spacing width
Extremely close	<0.02m

Very close	0.02-0.06m
Close	0.06-0.2m
Moderately Close	0.2-0.6m
Wide	0.6-2.0m
Very Wide	2.0-6.0m
Extremely Wide	>6.0m

4.7 Joint Orientation

The orientation of a planar surface intersected by drill core can be defined by two angles called alpha (a) and beta (β). The definition of these angles is shown in the diagram below:

4.8 Inclination

Term	Inclination (degrees from the horizontal)
Sub-horizontal	0-5
Gently Inclined	6-15
Moderately Inclined	16-30
Steeply Inclined	31-60
Very Steeply Inclined	61-80
Sub-vertical	81-90

4.9 Stratification/foliation

Term	Spacing
Very Thickly Bedded	>2m
Thickly Bedded	600mm-2m
Medium Bedded	200mm-600mm
Thinly Bedded	60mm-200mm

AECOM

Term	Spacing
Very Thinly Bedded	20mm-60mm
Laminated	6mm-20mm
Thinly Laminated	2mm-6mm
Fissile	<2mm

4.10 Grain Size

Term	Size
Very Coarse Grained	>60 mm
Coarse Grained	2mm-60mm
Medium Grained	60 microns – 2mm
Fine Grained	2 microns – 60 microns
Very Fine Grained	<2 microns

4.11 Aperture of open discontinuity

Symbol	Aperture Opening	Description	
VT	<0.1 mm	Very tight	Closed Features
Т	0.1-0.25mm	Tight	
PO	0.25-0.5mm	Partly open	
0	0.5-2.5mm	Open	Gapped Features
MW	2.5-10mm	Moderately open	
W	>10mm	Wide	
VW	1-10cm	Very wide	Open Features
EW	10-100cm	Extremely wide	
С	>1m	Cavernous	

4.12 Width of filled discontinuity

Symbol	Width	Description
W	12.5-50mm	Wide
MW	2.5-12.5mm	Moderately Wide
N	1.25-2.5mm	Narrow
VN	<1.25mm	Very Narrow
Т	0mm	Tight

4.13 Roughness of discontinuity

Symbol	Description	
Slk	Slickenside (surface has smooth, glassy finish with visual evidence of striations)	
S	Smooth (surface appears smooth and feels so to the touch)	
SR	Slightly rough (asperities on the discontinuity surfaces are distinguishable and can be felt)	
R	Rough (some ridges and side-angle steps are evident; asperities are clearly visible, and discontinuity surface feels very abrasive)	

Symbol	Description
VR	Very rough (near-vertical steps and ridges occur on the discontinuity surface)

4.14 Shape of discontinuity

Symbol	Description
PI	Planar
St	Stepped
Un	Undulating
Ir	Irregular

4.15 Filling amount

Symbol	Description
Su	Surface Stain
Sp	Spotty
Ра	Partially Filled
Fi	Filled
No	None

4.16 Filling Type

Symbol	Term	Hard/Soft
Ab	Albite	Hard
Ah	Anhydrite	Hard
Bt	Biotite	Soft
Bn	Bornite	Hard
Са	Calcite	Hard
Cb	Carbonate	Hard
Ch	Chlorite	Soft
Сру	Chalcopyrite	Hard
Су	Clay	Soft
Do	Dolomite	Hard
Ep	Epidote	Hard
Fd	Feldspar	Hard
FeOx	Iron Oxide	Hard
Go	Gouge	Soft
Gr	Graphite	Soft
Gy	Gypsum	Soft
Не	Hematite	Hard
Ка	Kaolinite	Soft
Kf	K-feldspar	Hard

AECOM

Symbol	Term	Hard/Soft
Lm	Limonite/FeOx	Soft
Ms	Muscovite	Soft
Mt	Magnetite	Hard
Ру	Pyrite	Hard
Qz	Quartz	Hard
Rb	Rubble	Hard
Sa	Sand	Hard
Se	Sericite/Illite	Soft
Si	Silt	Hard
Sm	Smectite	Soft
Su	Sulphide	Hard
Та	Talc	Soft
UH	Unknown Hard	Hard
US	Unknown Soft	Soft
OTH - see comments		

Laboratory Results

Fax: 204 284 2040

Moisture

Content (%)

41.4%

56.5%

-

49.7%

51.8%

-49.7%

41.2%

-

50.9%

35.0%

6.7%

36.8%

29.9%

28.5%

47.7%

56.7%

43.9%

50.0%

59.3%

38.1%

31.8%

50.9%

56.1%

56.7%

48.4%

52.1%

58.6%

67.6%

63.4%

17.3% 11.1%

28.5% 26.5%

25.7%

Project Name:	Brady Landfill	Supplier:	AECOM
Project Number:	60733855	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	COlivar
Sample Location:	Brady Landfill	Sample Date:	July 8, 2024
Sample Depth:	Varies	Lab Technician:	JEnriquez
Sample Number:	Varies	Date Tested:	July 22, 2024

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)
BH24-01	G1	0.15 - 0.30 m	30.5%		G5	2.90 - 3.05 m
	G2	0.61 - 0.76 m	35.0%		G6	4.42 - 4.57 m
	G3	1.37 - 1.52 m	35.6%		T7	0.00 - 0.61 m
	T4	0.00 - 0.00 m	-		G8	5.94 - 6.10 m
	G5	2.90 - 3.05 m	60.3%		G9	7.47 - 7.62 m
	G6	4.42 - 4.57 m	50.0%		T10	0.00 - 0.61 m
	T7	0.00 - 0.00 m	-		G11	8.99 - 9.14 m
	G8	5.94 - 6.10 m	53.3%		G12	10.52 - 10.67 m
	G9	7.47 - 7.62 m	52.9%		T13	0.00 - 0.61 m
	T10	0.00 - 0.00 m	-		G14	12.04 - 12.19 m
	G11	8.99 - 9.14 m	55.9%		G15	13.56 - 13.72 m
	G12	10.52 - 10.67 m	53.8%		G16	15.09 - 15.24 m
	T13	0.00 - 0.00 m	-			
	G14	12.04 - 12.19 m	59.3%	BH24-04	G1	0.15 - 0.30 m
	G15	13.56 - 13.72 m	54.4%		G2	0.61 - 0.76 m
	G16	15.09 - 15.24 m	29.2%		G3	1.37 - 1.52 m
					G4	2.90 - 3.05 m
BH24-02	G1	0.15 - 0.30 m	33.7%		G5	4.42 - 4.57 m
	G2	0.61 - 0.76 m	29.6%		G6	5.94 - 6.10 m
	G3	1.37 - 1.52 m	36.1%		G7	7.47 - 7.62 m
	G4	2.90 - 3.05 m	50.4%			
	T5	0.00 - 0.00 m	-	BH24-06	G1	0.00 - 0.15 m
	G6	4.42 - 4.57 m	53.2%		G2	0.61 - 0.76 m
	G7	5.94 - 6.10 m	51.1%		G3	1.37 - 1.52 m
	T8	0.00 - 0.00 m	-		G4	2.90 - 3.05 m
	G9	7.47 - 7.62 m	54.0%		G5	4.42 - 4.57 m
	G10	8.99 - 9.14 m	49.6%		G6	5.94 - 6.10 m
	T11	0.00 - 0.00 m	-		G7	7.47 - 7.62 m
	G12	10.52 - 10.67 m	41.4%		G8	8.99 - 9.14 m
	G13	12.04 - 12.19 m	24.2%		G9	10.52 - 10.67 m
	T14	0.00 - 0.00 m	-		G10	12.04 - 12.19 m
	G15	13.56 - 13.72 m	24.0%		G11	13.56 - 13.72 m
	G16	15.09 - 15.24 m	23.9%		G12	15.09 - 15.24 m
					G13	15.24 - 15.39 m
BH24-03	G1	0.15 - 0.30 m	29.2%			
	G2	0.61 - 0.76 m	40.4%	BH24-08	G1	0.15 - 0.30 m
	G3	1.37 - 1.52 m	41.9%		G2	0.61 - 0.76 m
	T4	0.00 - 0.61 m	-		G3	1.37 - 1.52 m

Fax: 204 284 2040

Project Name:	Brady Landfill	Supplier:	AECOM
Project Number:	60733855	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	COlivar
Sample Location:	Brady Landfill	Sample Date:	July 8, 2024
Sample Depth:	Varies	Lab Technician:	JEnriquez
Sample Number:	Varies	Date Tested:	July 22, 2024

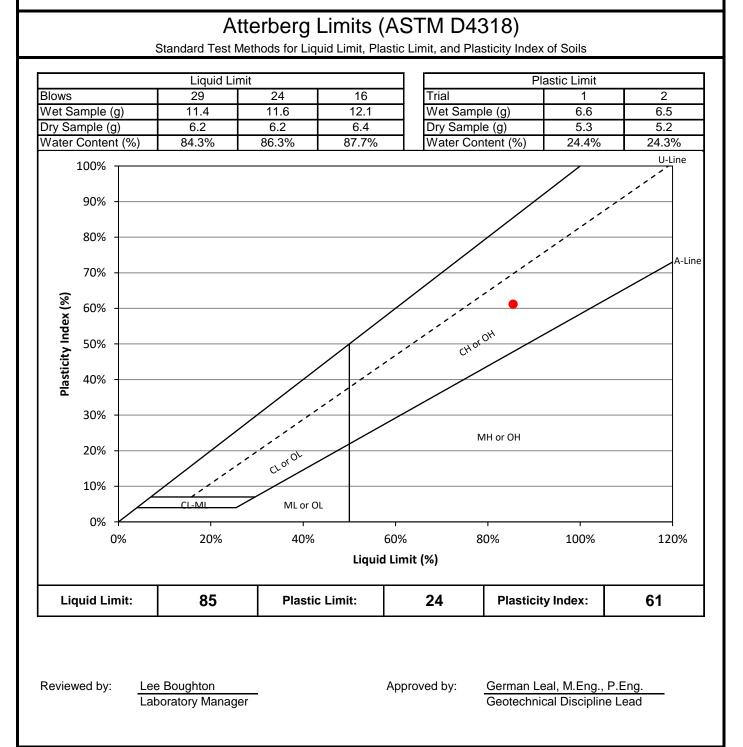
Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%
	G4	2.90 - 3.05 m	42.8%		G9	10.52 - 10.67 m	59.5%
	T5	0.00 - 0.00 m	-		G10	12.04 - 12.19 m	55.7%
	G6	4.42 - 4.57 m	54.8%		G11	13.56 - 13.72 m	56.6%
	G7	5.94 - 6.10 m	47.6%		G12	15.09 - 15.24 m	11.8%
	Т8	0.00 - 0.00 m	-		G13	16.61 - 16.76 m	11.5%
	G9	7.47 - 7.62 m	49.7%				
	G10	8.99 - 9.14 m	46.5%	BH24-11	G1	0.00 - 0.15 m	25.9%
	T11	0.00 - 0.00 m	-		G2	0.61 - 0.76 m	20.5%
	G12	10.52 - 10.67 m	50.6%		G3	1.37 - 1.52 m	27.1%
	G13	12.04 - 12.19 m	60.2%		G4	2.90 - 3.05 m	51.6%
	T14	0.00 - 0.00 m	-		G5	4.42 - 4.57 m	56.1%
	G15	13.56 - 13.72 m	61.7%		G6	5.94 - 6.10 m	51.4%
	G16	15.09 - 15.24 m	7.5%		G7	7.47 - 7.62 m	53.9%
					G8	8.99 - 9.14 m	53.2%
BH24-09	G1	0.15 - 0.30 m	26.7%				
	G2	0.61 - 0.76 m	21.1%	BH24-12	G1	0.15 - 0.30 m	35.4%
	G3	1.37 - 1.52 m	22.2%		G2	0.61 - 0.76 m	31.2%
	T4	0.00 - 0.00 m	-		G3	1.37 - 1.52 m	32.5%
	G5	2.90 - 3.05 m	51.8%		G4	2.90 - 3.05 m	50.7%
	G6	4.42 - 4.57 m	61.4%		G5	4.42 - 4.57 m	52.2%
	T7	0.00 - 0.00 m	-		G6	5.94 - 6.10 m	48.5%
	G8	5.94 - 6.10 m	62.7%		G7	7.47 - 7.62 m	45.8%
	G9	7.47 - 7.62 m	51.3%				
	T10	0.00 - 0.00 m	-	BH24-13	G1	0.15 - 0.30 m	32.3%
	G11	8.99 - 9.14 m	57.4%		G2	0.61 - 0.76 m	22.5%
	G12	10.52 - 10.67 m	58.4%		G3	1.37 - 1.52 m	25.4%
	G13	12.04 - 12.19 m	59.3%		G4	2.90 - 3.05 m	40.3%
	G14	13.56 - 13.72 m	58.5%		G5	4.42 - 4.57 m	61.7%
	G15	15.09 - 15.24 m	13.7%		G6	5.94 - 6.10 m	58.2%
					G7	7.47 - 7.62 m	50.6%
BH24-10	G1	2.74 - 0.15 m	32.3%				
	G2	0.61 - 0.76 m	27.2%	BH24-14	G1	0.15 - 0.30 m	13.8%
	G3	1.37 - 1.52 m	28.6%		G2	0.61 - 0.76 m	22.4%
	G4	2.90 - 3.05 m	52.5%		G3	1.37 - 1.52 m	23.7%
	G5	4.42 - 4.57 m	50.6%		G4	2.90 - 3.05 m	41.4%
	G6	5.94 - 6.10 m	61.0%		G5	4.42 - 4.57 m	55.5%
	G7	7.47 - 7.62 m	54.5%		G6	5.94 - 6.10 m	42.9%
	G8	8.99 - 9.14 m	54.8%		G7	7.47 - 7.62 m	49.8%

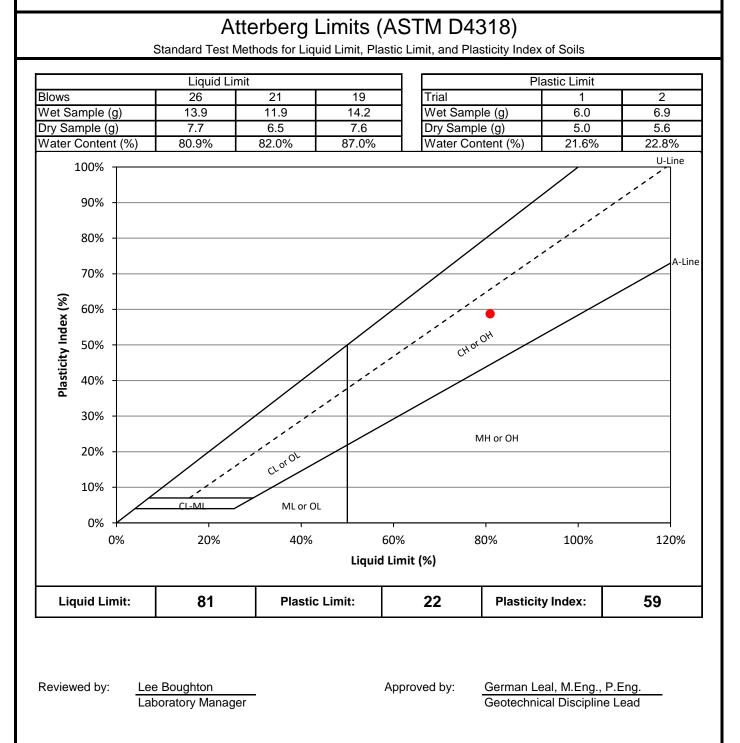
Fax: 204 284 2040

Project Name:	Brady Landfill	Supplier:	AECOM	
Project Number:	60733855	Specification:	N/A	
Client:	City of Winnipeg	Field Technician:	COlivar	
Sample Location:	Brady Landfill	Sample Date:	45481	
Sample Depth:	Varies	Lab Technician:	JEnriquez	
Sample Number:	Varies	Date Tested:	July 22, 2024	

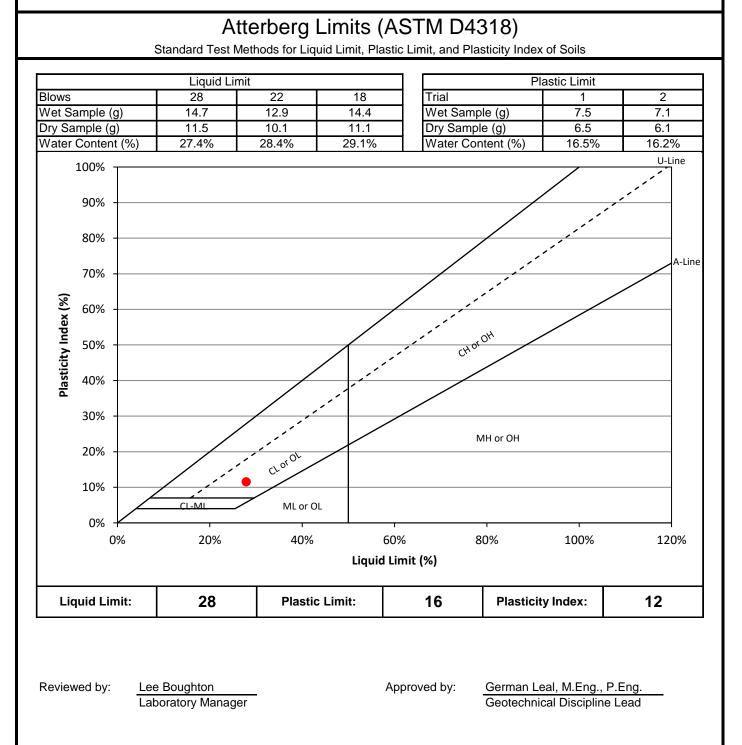

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

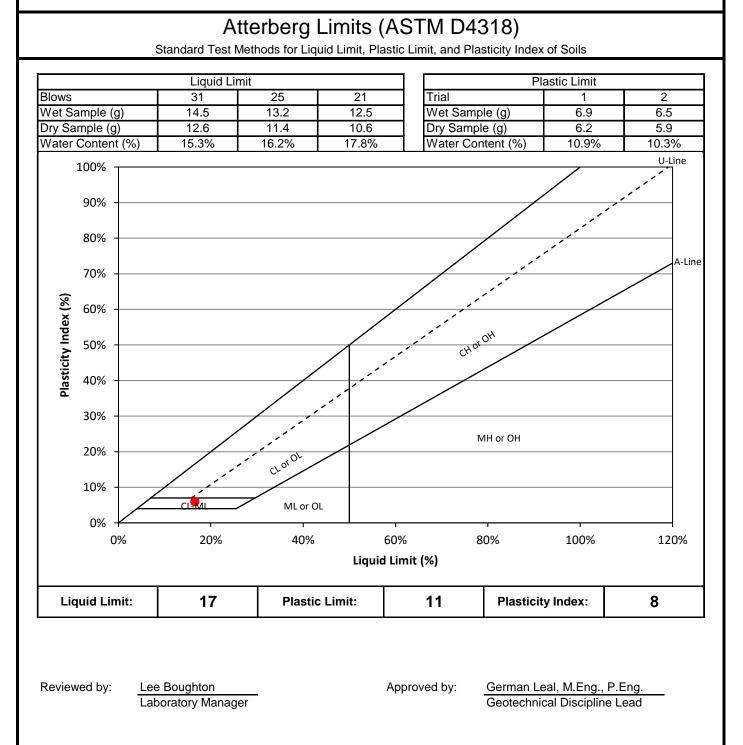
Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
	G8	8.99 - 9.14 m	56.3%				Content (76)
	G8 G9	10.52 - 10.67 m	65.1%				_
	G9 G10	12.04 - 12.19 m	52.9%				_
	G10 G11	13.56 - 13.72 m	30.2%				
	S12	13.72 - 14.17 m	30.2%				
							-
	G13	15.09 - 15.24 m	14.5%				-
BH24-15	G1	0.00 - 0.15 m	31.5%				
БП24-15	G1 G2						
		0.61 - 0.76 m	32.6%				-
	G3	1.37 - 1.52 m	36.2%				
	G4	2.90 - 3.05 m	56.3%				
	G5	4.42 - 4.57 m	56.7%				
	G6	5.94 - 6.10 m	51.9%				
							1
							+
					┨────┤		+
					┥───┤		



Project Name:	Brady Landfill		
Project Number:	60733855	Supplier/Location:	Winnipeg, Manitoba
Client:	City of Winnipeg	Field Technician:	COlivar
Sample Location:	BH24-01	Sample Date:	July 24, 2024
Sample Depth:	4.57 - 5.18 m	Lab Technician:	JEnriquez
Sample Number:	T7	Date Tested:	August 19, 2024

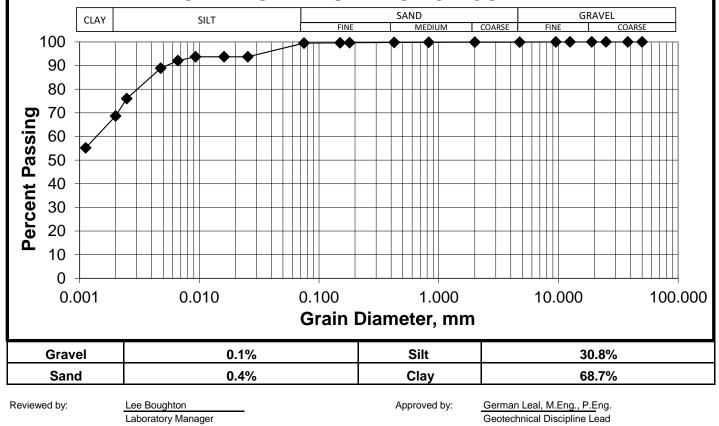


Project Name:	Brady Landfill		
Project Number:	60733855	Supplier/Location:	Winnipeg, Manitoba
Client:	City of Winnipeg	Field Technician:	COlivar
Sample Location:	BH24-01	Sample Date:	July 24, 2024
Sample Depth:	10.67 - 11.28 m	Lab Technician:	JEnriquez
Sample Number:	T13	Date Tested:	August 19, 2024



Project Name:	Brady Landfill		
Project Number:	60733855	Supplier/Location:	Winnipeg, Manitoba
Client:	City of Winnipeg	Field Technician:	COlivar
Sample Location:	BH24-08C	Sample Date:	July 24, 2024
Sample Depth:	1.37 - 1.52 m	Lab Technician:	JEnriquez
Sample Number:	G3	Date Tested:	August 19, 2024

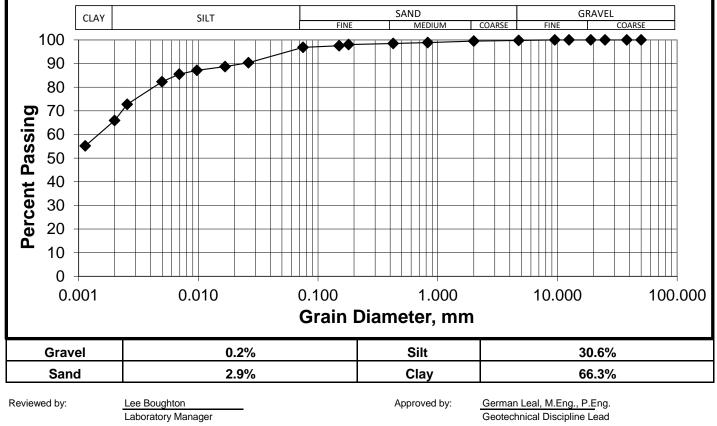
Project Name:	Brady Landfill		
Project Number:	60733855	Supplier/Location:	Winnipeg, Manitoba
Client:	City of Winnipeg	Field Technician:	COlivar
Sample Location:	BH24-10	Sample Date:	July 24, 2024
Sample Depth:	16.61 - 16.76 m	Lab Technician:	JEnriquez
Sample Number:	G13	Date Tested:	August 19, 2024



Project Name:	Brady Landfill	
Project Number:	60733855	Supplier/Location: Brady Landfill
Client:	City of Winnipeg	Field Technician: COlivar
Sample Location:	BH24-01	Sample Date: 22-Jul-24
Sample Depth :	4.57 - 5.18 m	Lab Technician: JEnriquez
Sample Number:	Τ7	Date Tested: 14-Aug-24

Hydrometer (AASHTO T88)

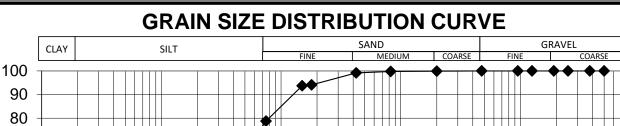
GRAVE	GRAVEL SIZES		SAND SIZES		NES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.9	0.0750	99.5
38.0	100.0	2.00	99.9	0.0255	93.8
25.0	100.0	0.825	99.8	0.0161	93.8
19.0	100.0	0.425	99.8	0.0093	93.8
12.5	100.0	0.18	99.7	0.0066	92.2
9.5	100.0	0.15	99.6	0.0048	89.0
4.75	99.9	0.075	99.5	0.0025	76.1
				0.0020	68.7
				0.0011	55.2

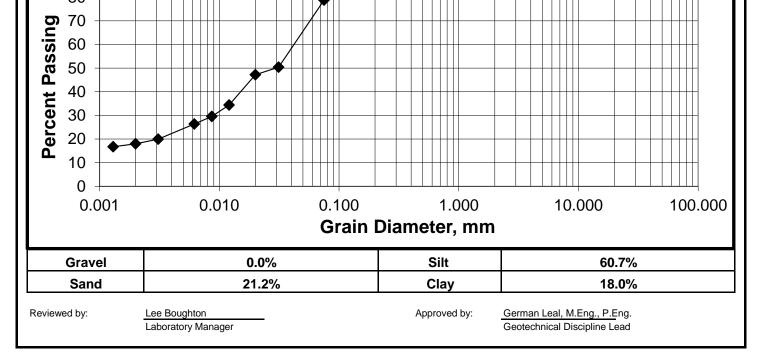


Project Name:	Brady Landfill	
Project Number:	60733855	Supplier/Location: Brady Landfill
Client:	City of Winnipeg	Field Technician: COlivar
Sample Location:	BH24-01	Sample Date: 22-Jul-24
Sample Depth :	10.67 - 11.28 m	Lab Technician: JEnriquez
Sample Number:	T13	Date Tested: 14-Aug-24

Hydrometer (AASHTO T88)

GRAVE	GRAVEL SIZES		SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.8	0.0750	96.9
38.0	100.0	2.00	99.5	0.0262	90.8
25.0	100.0	0.825	98.9	0.0167	89.2
19.0	100.0	0.425	98.5	0.0097	87.6
12.5	100.0	0.18	98.0	0.0069	86.0
9.5	100.0	0.15	97.5	0.0050	82.8
4.75	99.8	0.075	96.9	0.0025	73.1
				0.0020	66.3
				0.0011	55.5

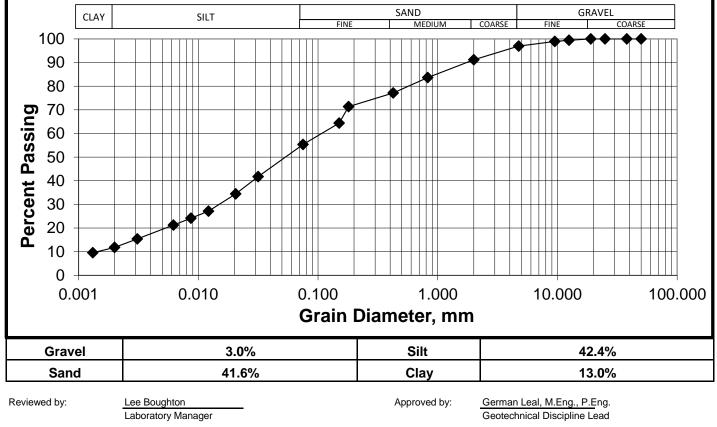




Project Name: Brac	dy Landfill		
Project Number: 6073	33855	Supplier/Location:	Brady Landfill
Client: City	of Winnipeg	Field Technician:	COlivar
Sample Location: BH2	24-08C	Sample Date:	22-Jul-24
Sample Depth: 1.37	7 - 1.52 m l	Lab Technician:	JEnriquez
Sample Number: G3		Date Tested:	14-Aug-24

Hydrometer (AASHTO T88)

GRAVE	GRAVEL SIZES		SAND SIZES		NES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	78.8
38.0	100.0	2.00	99.9	0.0313	50.5
25.0	100.0	0.825	99.8	0.0200	47.3
19.0	100.0	0.425	99.2	0.0121	34.4
12.5	100.0	0.18	94.1	0.0087	29.6
9.5	100.0	0.15	93.7	0.0062	26.4
4.75	100.0	0.075	78.8	0.0031	20.0
				0.0020	18.0
				0.0013	16.8



Project Name:	Brady Landfill	
Project Number:	60733855	Supplier/Location: Brady Landfill
Client:	City of Winnipeg	Field Technician: COlivar
Sample Location:	BH24-10	Sample Date: 22-Jul-24
Sample Depth :	16.61 - 16.76 m	Lab Technician: JEnriquez
Sample Number:	G13	Date Tested: 14-Aug-24

Hydrometer (AASHTO T88)

GRAVE	GRAVEL SIZES		SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	97.0	0.0750	55.3
38.0	100.0	2.00	91.2	0.0316	45.8
25.0	100.0	0.825	83.6	0.0205	37.8
19.0	100.0	0.425	77.1	0.0122	29.8
12.5	99.5	0.18	71.4	0.0087	26.5
9.5	98.9	0.15	64.4	0.0062	23.3
4.75	97.0	0.075	55.3	0.0031	16.9
				0.0020	13.0
				0.0013	10.5

Project Name:	Brady Landfill Area B			
Project Number:	60733855	Supplier/Location:	N/A	
Client:	City of Winnipeg	Field Technician:	Camilo Olivar	
Sample Location:	BH24-09	Sample Date:	July 24, 2024	
Sample Depth :	5	Lab Technician:	LB-LC	
Sample Number:	Τ4	Date Range Tested:	August 15, 2024	September 2, 2024

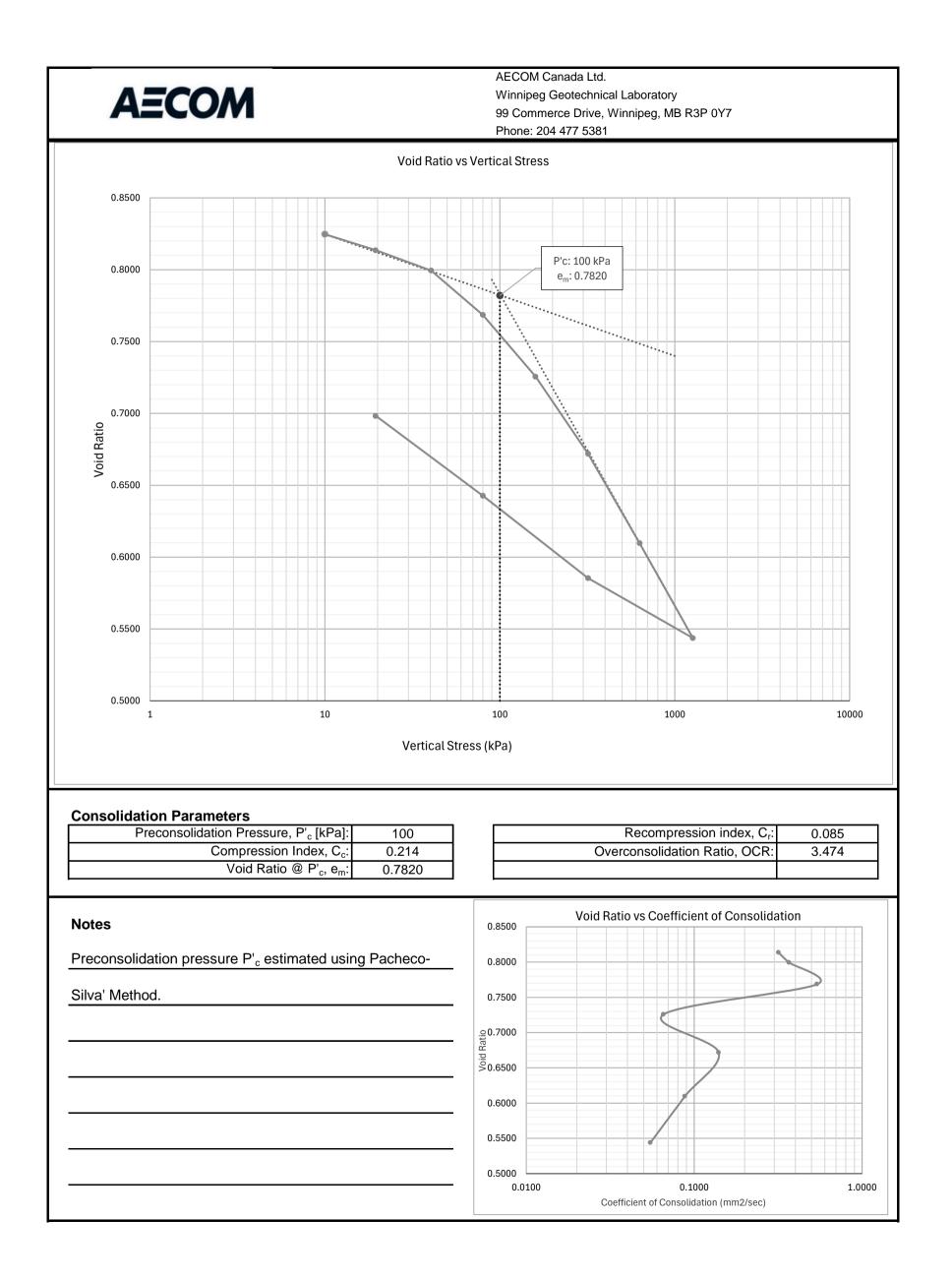
Consolidation Test Report (ASTM D2435) - Method "A"

Standard Test Methods for One-dimensional Consolidation Properties of Soil Using Incremental Loading

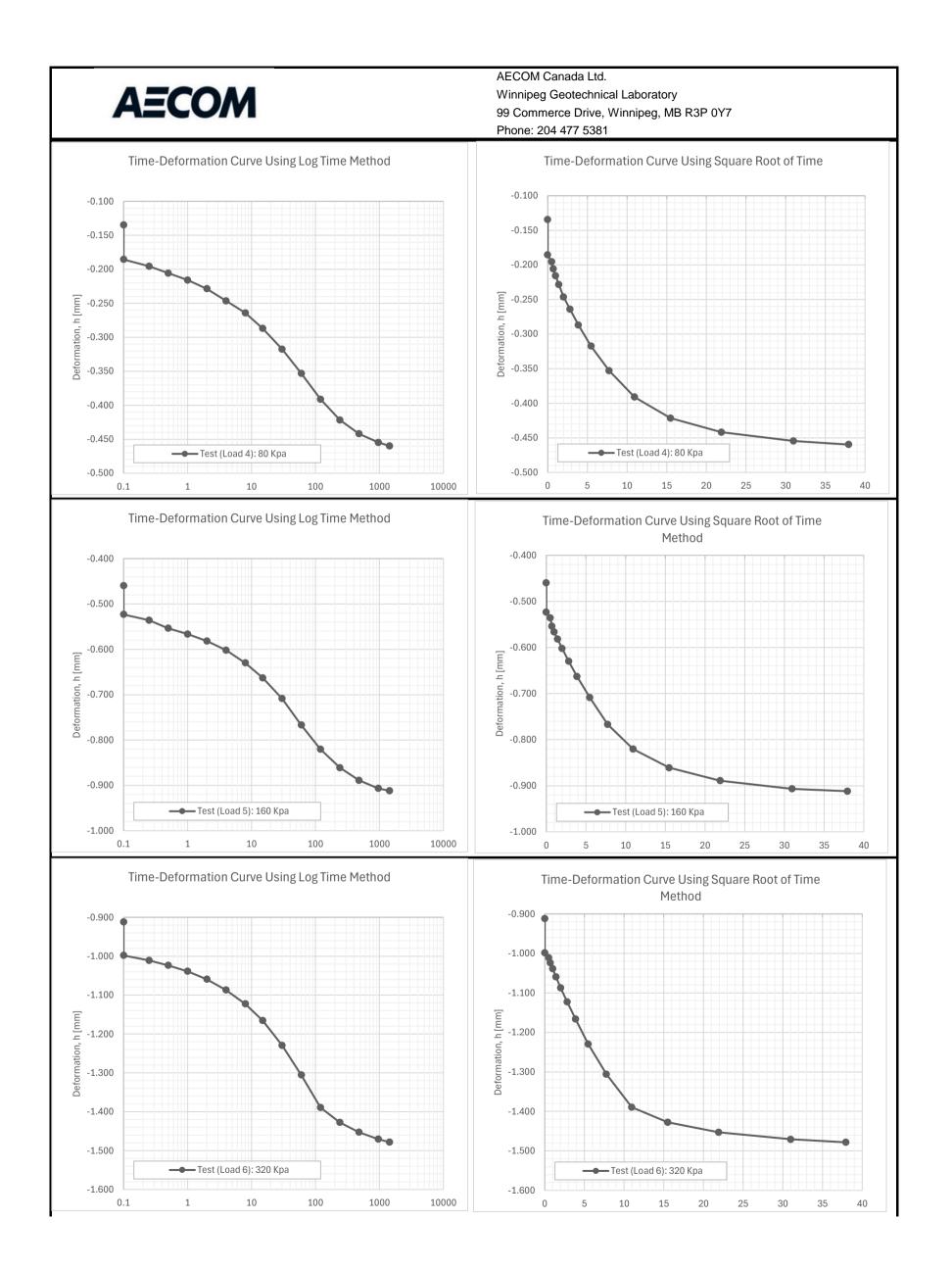
Sample Information and Test Parameters

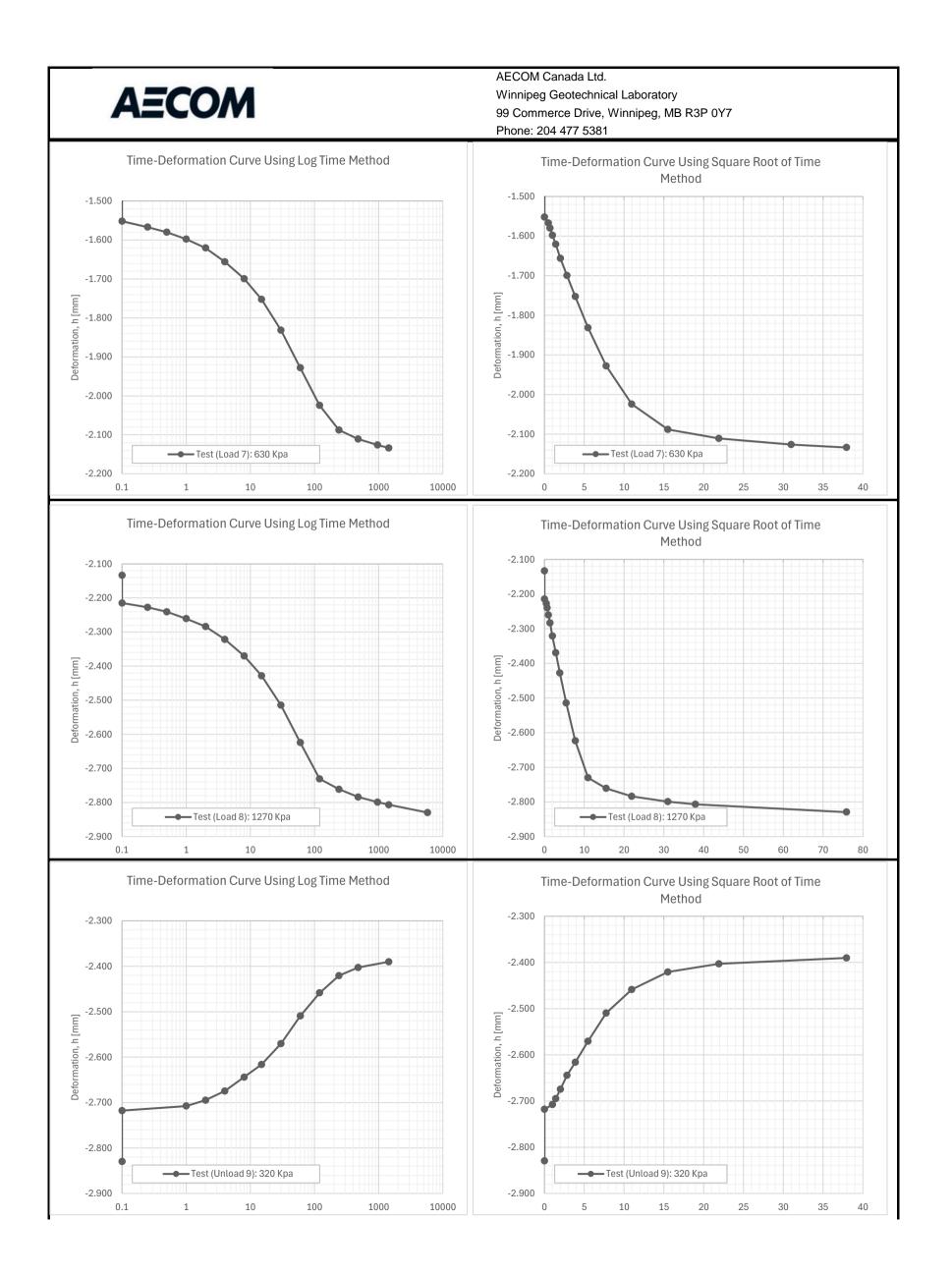
Equipment

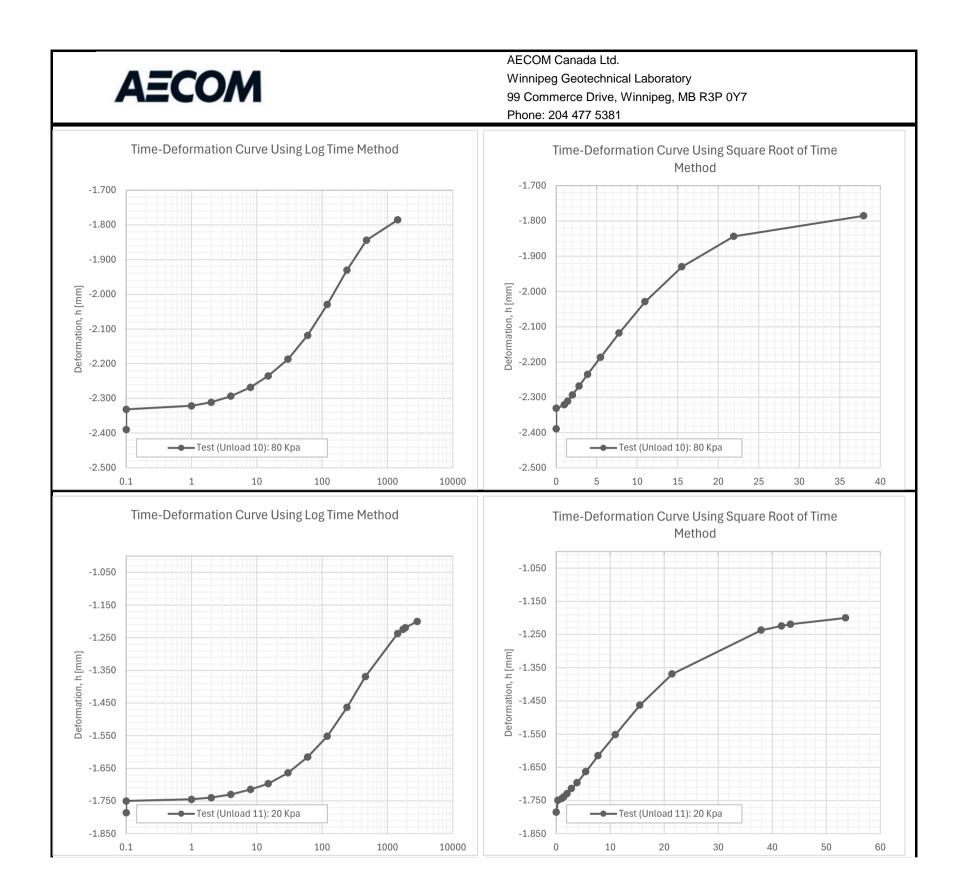
Lquipment	
Oedometer No:	2
Lever Multiplier:	11
Avg. Ring Diam. [mm]:	70
Ring Height [mm]:	19.1
Ring Weight [g]:	79.899
Ring In. Area [mm2]:	3848
Ring In. Vol [mm3]:	73505
Apparatus Deformation Corr [mm]:	0
Deform Ind Conv Factor (mm/0.0001")	0.0025
Density of Test Water [g/cm3]	0.9980


Moisture Content	Initial	Final
Tare Number:	t16	b29
Weight of Tare [g]:	8.4	88.499
Wt of Wet Soil + Tare [g]:	246.7	229.6
Wt of Dry Soil + Tare [g]:	186.0	197.8
% Moisture:	34.2%	29.1%

Soil Parameters/Characteristics


Specific Gravity:	2.70
Soil Description:	Clay
Dry Mass of Solids (Md) [g]:	109.30
Vol of Solids (Vs) [cm3]:	40.56
Ht of Solids (Hs) [mm]:	10.54


Specimen	Initial	Final
Weight of Ring + Soil [g]:	221.531	221
Weight of Soil [g]:	141.632	141.101
Void Ratio (e) []:	0.8121	0.6983
Deg of Saturation (S) [%]:	98.3%	96.7%
Height of Specim. [mm]:	19.1	17.9
Vol. of Specimen [mm3]:	73505	68887
Bulk Density [g/cm3]:	1.927	2.048
Dry Density [g/cm3]:	1.436	1.587
Bulk Unit Wt [kN/m3]:	18.90	20.09
Dry Unit Wt [kN/m3]:	14.08	15.56


	Consolidation Test Summary							
Stage No.	Load (kPa)	Deformation, h (mm)	Strain, ε (kPa)	CV (log-method)	CV (sqrt-method)	Void Ratio	Туре	
0								
1	10	0.1321	-1.50%			0.8247	Load	
2	19.5	0.0152	-0.61%	0.0154	0.3184	0.8136	Load	
3	40.5	-0.1346	-0.78%	0.0114	0.3675	0.7994	Load	
4	80	-0.4597	-1.71%	0.0486	0.5388	0.7685	Load	
5	160	-0.9119	-2.43%	0.0374	0.0656	0.7256	Load	
6	320	-1.4783	-3.11%	0.0416	0.1400	0.6719	Load	
7	630	-2.1336	-3.72%	0.0368	0.0881	0.6097	Load	
8	1270	-2.8296	-4.10%	0.0389	0.0548	0.5437	Load	
9	320	-2.3901	2.70%			0.5854	Unload	
10	80	-1.7856	3.62%			0.6427	Unload	
11	19.5	-1.2002	3.38%			0.6983	Unload	

Project Name:	Brady Landfill Area B			
Project Number:	60733855	Supplier/Location:	N/A	
Client:	City of Winnipeg	Field Technician:	Camilo Olivar	
Sample Location:	BH24-09	Sample Date:	July 24, 2024	
Sample Depth :	35	Lab Technician:	LB-LC	
Sample Number:	T13	Date Range Tested:	August 15, 2024	September 2, 2024

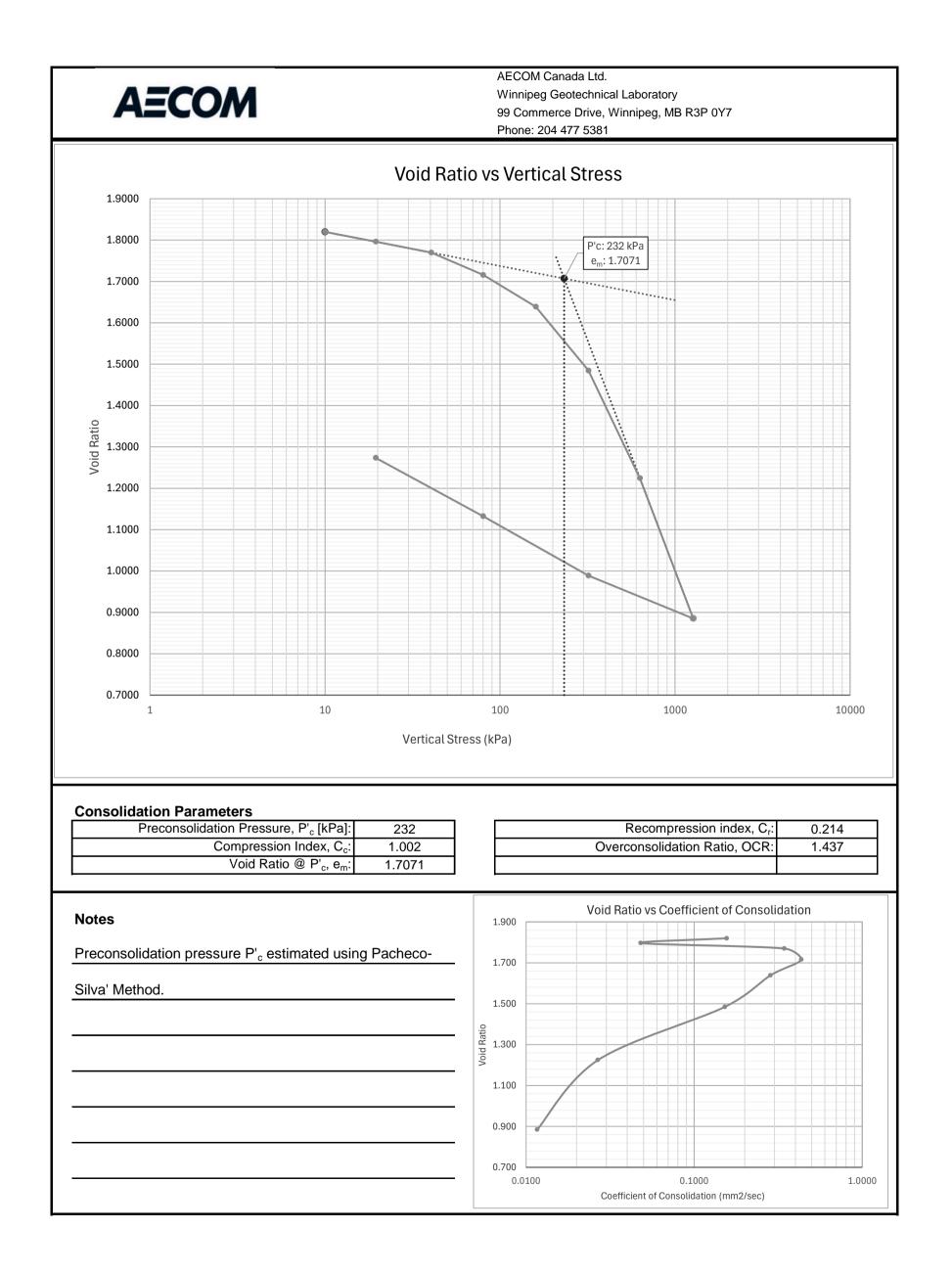
Consolidation Test Report (ASTM D2435) - Method "A"

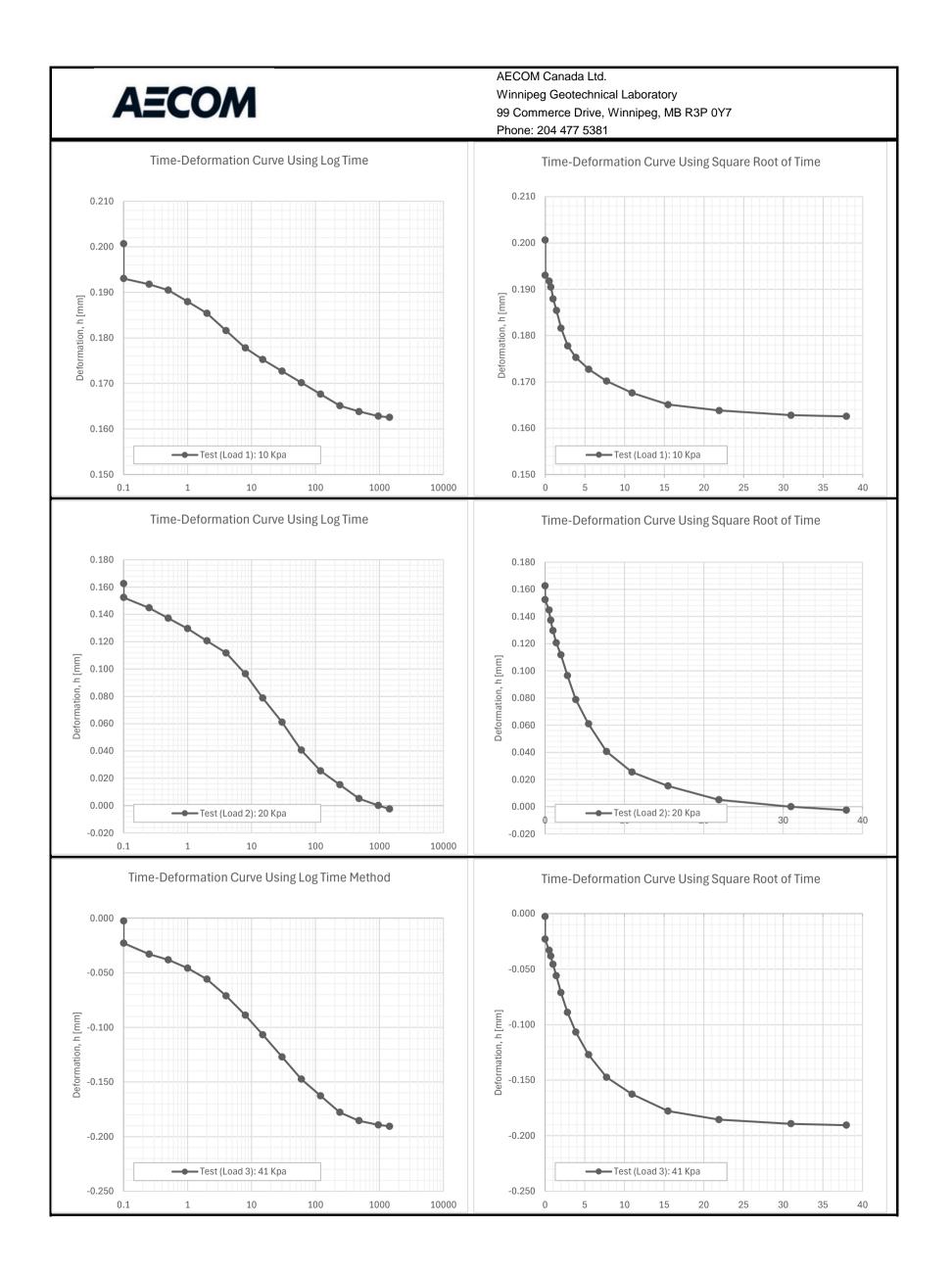
Standard Test Methods for One-dimensional Consolidation Properties of Soil Using Incremental Loading

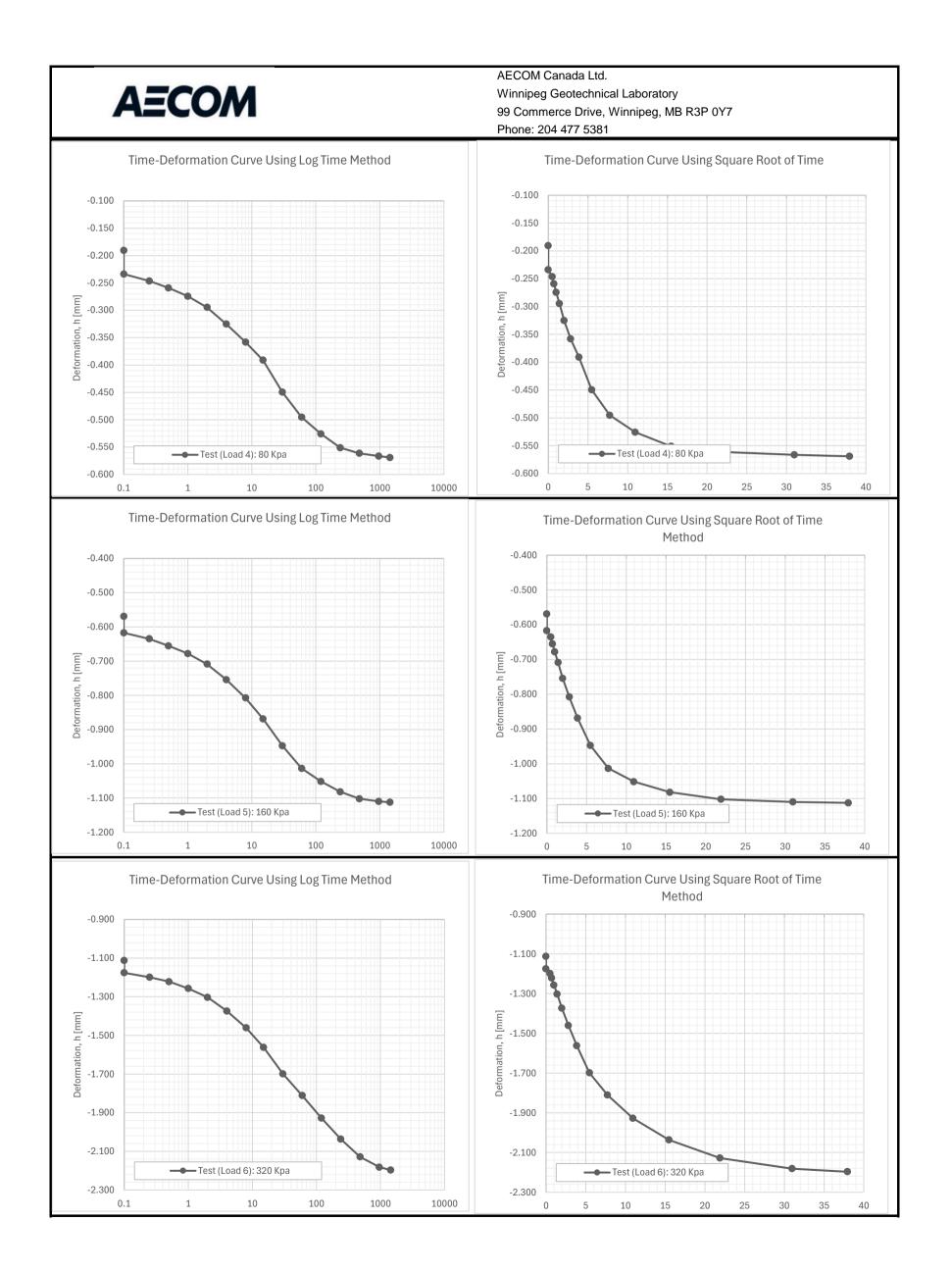
Sample Information and Test Parameters

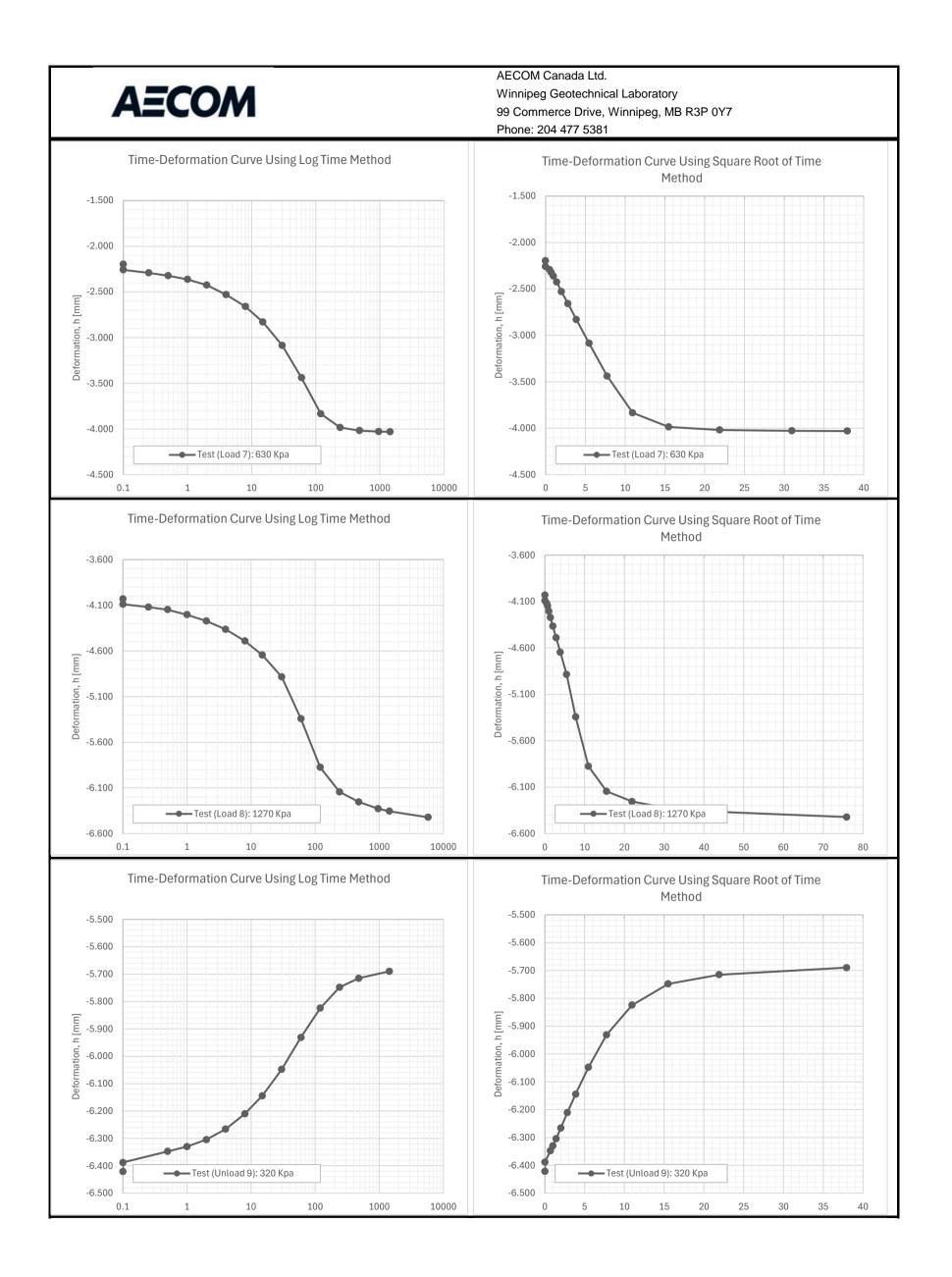
Equipment

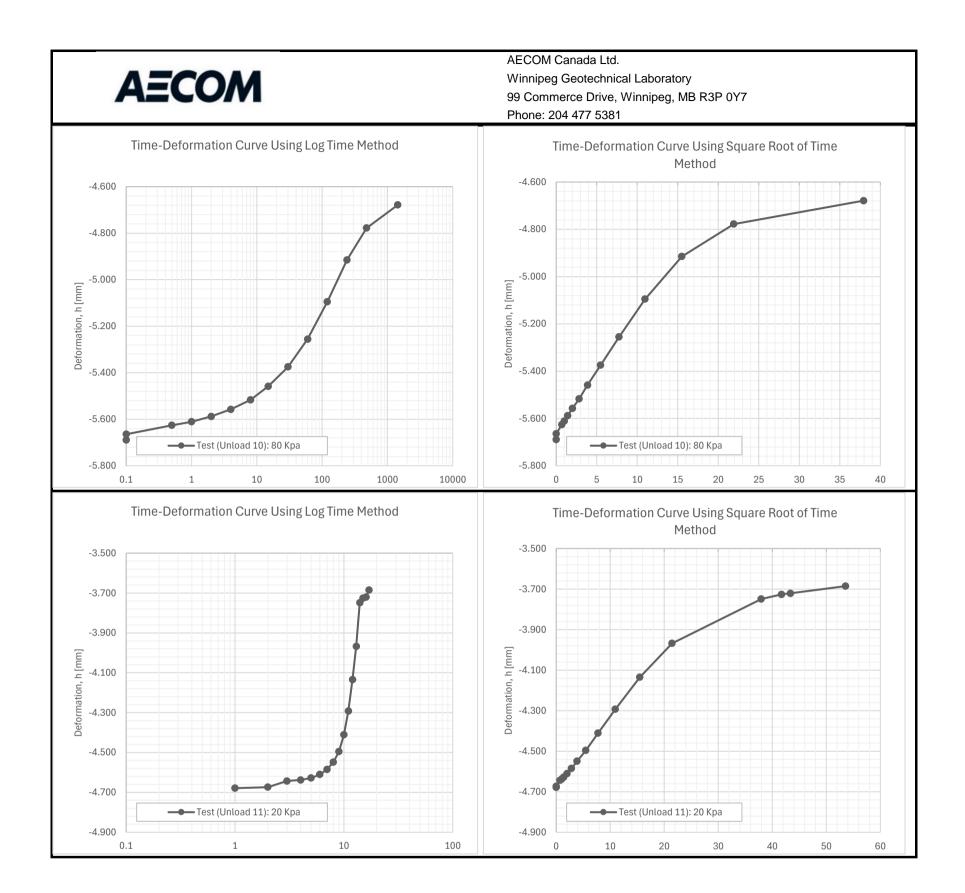
Lquipment	
Oedometer No:	1
Lever Multiplier:	11
Avg. Ring Diam. [mm]:	70
Ring Height [mm]:	19.7
Ring Weight [g]:	104.355
Ring In. Area [mm2]:	3848
Ring In. Vol [mm3]:	75814
Apparatus Deformation Corr [mm]:	0
Deform Ind Conv Factor (mm/0.0001")	0.0025
Density of Test Water [g/cm3]	0.9980


Moisture Content	Initial	Final
Tare Number:	1	X55
Weight of Tare [g]:	8.4	112.76
Wt of Wet Soil + Tare [g]:	211.7	224.4
Wt of Dry Soil + Tare [g]:	136.1	185.8
% Moisture:	59.2%	52.8%


Soil Parameters/Characteris	stics
-----------------------------	-------


Specific Gravity:	2.70
Soil Description:	Clay
Dry Mass of Solids (Md) [g]:	73.05
Vol of Solids (Vs) [cm3]:	27.11
Ht of Solids (Hs) [mm]:	7.04


Specimen	Initial	Final
Weight of Ring + Soil [g]:	221.531	216
Weight of Soil [g]:	117.176	111.645
Void Ratio (e) []:	1.797	1.268
Deg of Saturation (S) [%]:	90.8%	79.4%
Height of Specim. [mm]:	19.7	16.0
Vol. of Specimen [mm3]:	75814	61494
Bulk Density [g/cm3]:	1.546	1.816
Dry Density [g/cm3]:	0.971	1.188
Bulk Unit Wt [kN/m3]:	15.16	17.80
Dry Unit Wt [kN/m3]:	9.52	11.65


	Consolidation Test Summary							
Stage No.	Load (kPa)	Deformation, h (mm)	Strain, ε (kPa)	CV (log-method)	CV (sqrt-method)	Void Ratio	Туре	
0								
1	10	0.1626	-0.19%	0.0597	0.1563	1.820	Load	
2	19.5	-0.0025	-0.83%	0.0243	0.0482	1.796	Load	
3	40.5	-0.1905	-0.95%	0.0244	0.3443	1.770	Load	
4	80	-0.5690	-1.94%	0.0868	0.4350	1.716	Load	
5	160	-1.1125	-2.84%	0.0951	0.2847	1.639	Load	
6	320	-2.1971	-5.84%	0.0483	0.1526	1.485	Load	
7	630	-4.0310	-10.48%	0.0291	0.0268	1.224	Load	
8	1270	-6.4211	-15.25%	0.0157	0.0117	0.885	Load	
9	320	-5.6896	5.51%			0.989	Unload	
10	80	-4.6787	7.22%			1.133	Unload	
11	19.5	-3.6855	6.61%			1.274	Unload	

roject Number: 60733855				Supplier/Location: N/A							
Client: City of Winnipeg				Field Technician: COlivar							
Sample Location: BH24-01				Sample Date: July 24, 2024							
Sample Depth: 1.52 - 2.13 m				Lab Technician: LBoughton							
Sample Number: T4				Date Tes	ted:	August 20	, 2024				
Flex Standard Test Method for Me	ble Wal							ermeameter			
Soil Description:		CLAY	- arev. f	rm. moist.	siltv. trace	organics, h	iah plasticity	v			
Preparation Process:	urbed	,,	<u>,</u> ,		<u></u>	/					
Type of Permeant Liquid:			d Water	•							
Type of Liquid Reservoir:			Burrettes								
Confining Pressure (kPa):		172.37									
Effective Saturation Stress	kPa).	137.90									
Hydraulic Gradient:		53.07	·								
Hydraulic Conductivity, "k'	(m/s):	1.6E-1	0								
lydraulic Conductivity, k		1.6E-1									
,	20 (/			Characteris	tics						
leight (mm):	7	71.58			ity (kg/m ³):		1307	. .3			
Diameter (mm):	5	52.88			ontent (%):		37.4	37.4			
Vet Mass (g):	382.20				Specific G	Gravity:	2.613				
Area (cm ²):	4.0	24E-03		Satuartio			97.9				
/olume (cm ³):	2.1	27E-04									
		Final	Sample	Characteris	tics						
leight (mm):	7	72.10	<u></u>		ity (kg/m ³):		1283	8.7			
Diameter (mm):	5	53.07			ontent (%):		39.	6			
Vet Mass (g):	3	88.40		Assumed	Specific G	Gravity:	2.61	3			
Area (cm ²):	4.0	83E-03		Satuartio			100	.0			
/olume (cm ³):	2.1	67E-04									
4 005 00											
1.00E-08											
1.00E-09 -											
(s											
k (m/s)											
V Y								□ kt			
1.00E-10								k20			
1.00E-11		I	1	I							
0.0		1.0			2.0			3.0			
			Elapsed	l Time (Days	5)						

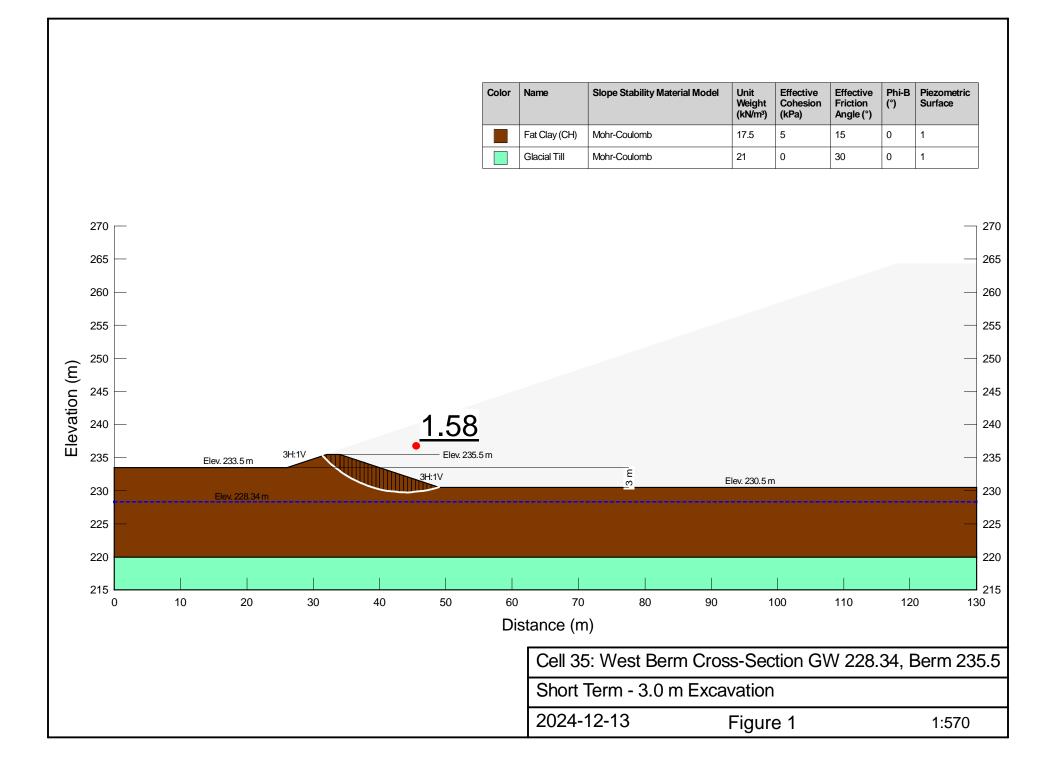
				Elaps		ie (Days	>)					
0.0		1.0		2.0	l - **		.0		4.0		5.0	
1.00E-11												
1.00E-10 -												∆ k20
k (m/s)												□ kt
(s)												
1.00E-09 -												
1.00E-08												
/olume (cm).			2.1041	04								
Area (cm ²): /olume (cm ³):			4.145E-03 2.184E-04		5	atuartio	n (%):				100.0	
Vet Mass (g):			367.			ssumed			vity:		2.738	
Diameter (mm):			52.6			/ater Co		· · /			56.3	
leight (mm):			72.6			ry Dens					1077.6	
				Final Sample				-				
/olume (cm ³):			2.152E	=-04]							
Area (cm ²):		4.126E-03			S	atuartio	n (%):			99.0		
Vet Mass (g):		363.00				Assumed Specific Gravity:				2.738		
Diameter (mm):		52.17				/ater Co		()			54.6	
Height (mm):			72.4			ry Dens					1091.1	
				Initial Sampl	e Cha	racteris	stics					
Hydraulic Conduc	tivity, "	k ₂₀ " (m/s): [5	5.9E-11								
Hydraulic Conducti				6.6E-11								
Hydraulic Gradient				53.63								
Effective Saturation	Stress	(kPa):	1	137.90								
Confining Pressure				172.37								
Type of Liquid Res				Burrettes								
Type of Permeant				Deaired Wat	er							
Preparation Proces				nrm,	moist,	siity,	nign pi	asticity				
Standard Test Metho Soil Description:	od for Mea	asurement o		CLAY - grey,					-	I Flexible \	Vall Perm	eameter
				Permea		•				,		
									Ŭ.			
Sample Number:	T7					ate Tes			August 8			
Sample Location: Sample Depth:					-	Sample Date:July 24, 2024Lab Technician:LBoughton						
Client:	City of Winnipeg			-	Field Technician: COlivar							
Project Number:	60733855				Supplier/Location: N/A							

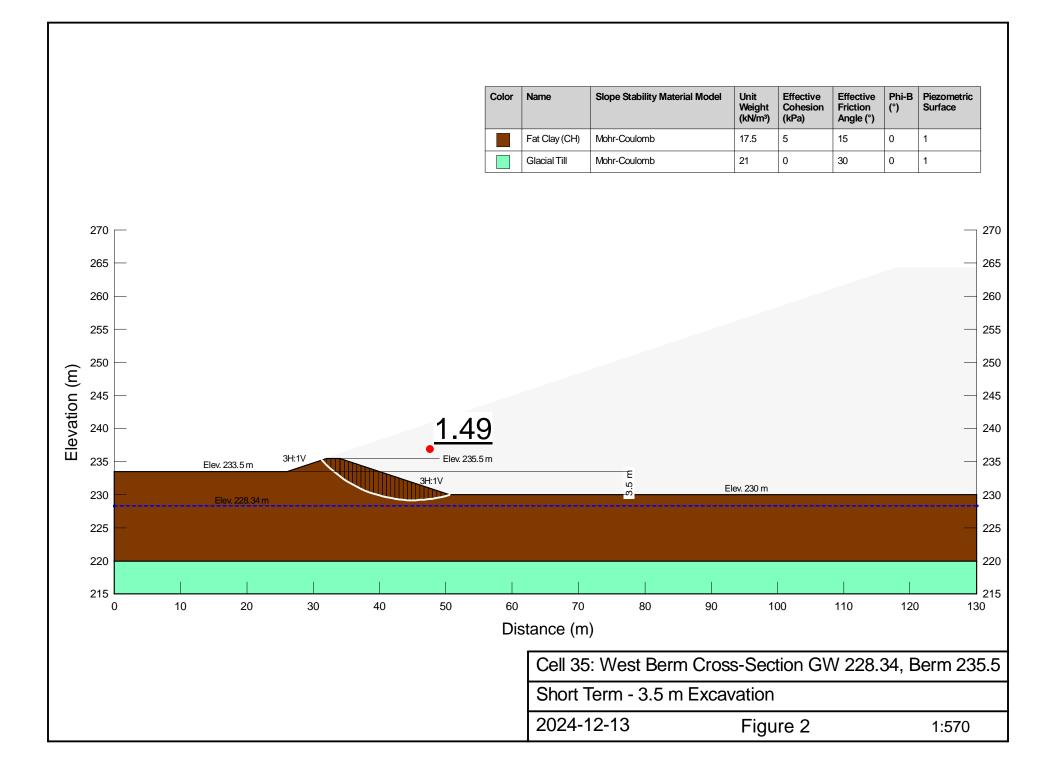
1	/33855 / of Winnipeg		Supplier/Location: N/A Field Technician: COlivar				
	24-01		Sample Date: July 24, 2024				
	67 - 11.28 m		Lab Technician:	LBoughton			
Sample Depth. 10.			Date Tested:	August 8, 2			
)			7890310,2	024		
FIE Standard Test Method for Soil Description:		lydraulic Conductivi	meter (AST) ty of Saturated Porous n, firm, moist, silty,	Materials Using a F	,	eameter	
Preparation Process:		Undisturbed					
Type of Permeant Liqui	d:	Deaired Wat	er				
Type of Liquid Reservo	ir:	Burrettes					
Confining Pressure (kP	a):	172.37					
Effective Saturation Str	ess (kPa):	137.90					
Hydraulic Gradient:		52.49					
Hydraulic Conductivity,	"k" (m/s):	9.6E-11					
Hydraulic Conductivit	y, "k ₂₀ " (m/s):	8.6E-11					
		Initial Sample	e Characteristics				
Height (mm):		71.17	Dry Density (kg/	m ³):	1117.9		
Diameter (mm):		53.53	Water Content (55.1		
Wet Mass (g):	3	69.10	Assumed Specif	ic Gravity:	2.675		
Area (cm ²):	3.9	78E-03	Satuartion (%):		105.8		
Volume (cm ³):	2.1	29E-04	<u>_</u>	•			
		Final Sample	Characteristics			-	
Height (mm):		71.67	Dry Density (kg/i	m ³).	1119.2		
Diameter (mm):		53.60	Water Content (52.0		
Wet Mass (g):		67.80	Assumed Specif	,	2.675		
Area (cm ²):		35E-03	Satuartion (%):	ic Glavity.	100.0		
Volume (cm ³):		63E-04	edition (70).		100.0		
1.00E-08							
1.00E-09							
(s/							
k (m/s)						🗖 kt	
1.00E-10						<mark>∆</mark> k20	
1.00E-11							
0.0	1.0	2.0	3.0	4.0	5.0		
			ed Time (Days)				
		Liapse					
.			• · · ·				
Reviewed by: Lee Bo	ughton		Approved by:	German Leal, I	VI.Ena., P.Ena.		

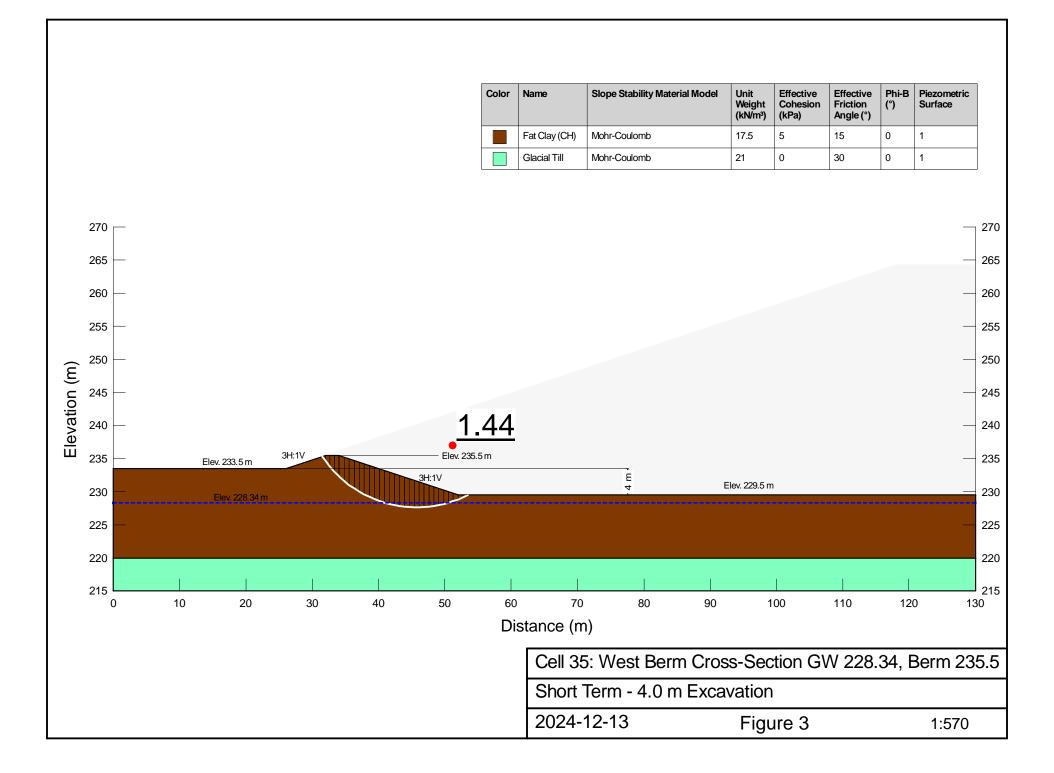
1.00E-10							_ 120		
k (m/s)							□ kt ▲ k20		
1.00E-09									
1.00E-08									
/olume (cm ³):	2.268	E-04							
Area (cm ²):	4.188			uartion (%):		100.0			
Vet Mass (g):	395			umed Speci	· · ·	2.725			
Height (mm): Diameter (mm):	73. 54.			Density (kg, ter Content		<u>1174.4</u> 48.4			
			ple Chara		2				
/olume (cm ³):	2.204	E-04					-		
Area (cm ²):	4.121	E-03		uartion (%):		100.6			
Vet Mass (g):		389.00			fic Gravity:	2.725			
Height (mm): Diameter (mm):		72.43 53.48			/m ³): (%):	1203.9 46.6			
			nple Chara		, 3, 1				
Hydraulic Conductivity,	"k ₂₀ " (m/s):	1.1E-10							
Hydraulic Conductivity, "k	" (m/s):	1.1E-10							
Hydraulic Gradient:		52.24							
Confining Pressure (kPa) Effective Saturation Stres		137.90							
Type of Liquid Reservoir:		Burrettes 172.37							
Type of Permeant Liquid:		Deaired V	/ater						
Preparation Process:		Undisturb							
Soil Description:		CLAY - gr	ey, firm, m	oist, silty, h	high plasticity				
Flex Standard Test Method for M	ible Wall			•		,	neameter		
Sample Number: T10		Date Tested: August 20, 2), 2024				
1 1	7.62 - 8.23 m			Lab Technician: LBoughton					
,				Sample Date: July 24, 2024					
Client: City of	r: 60733855 City of Winnipeg			Supplier/Location: N/A Field Technician: COlivar					

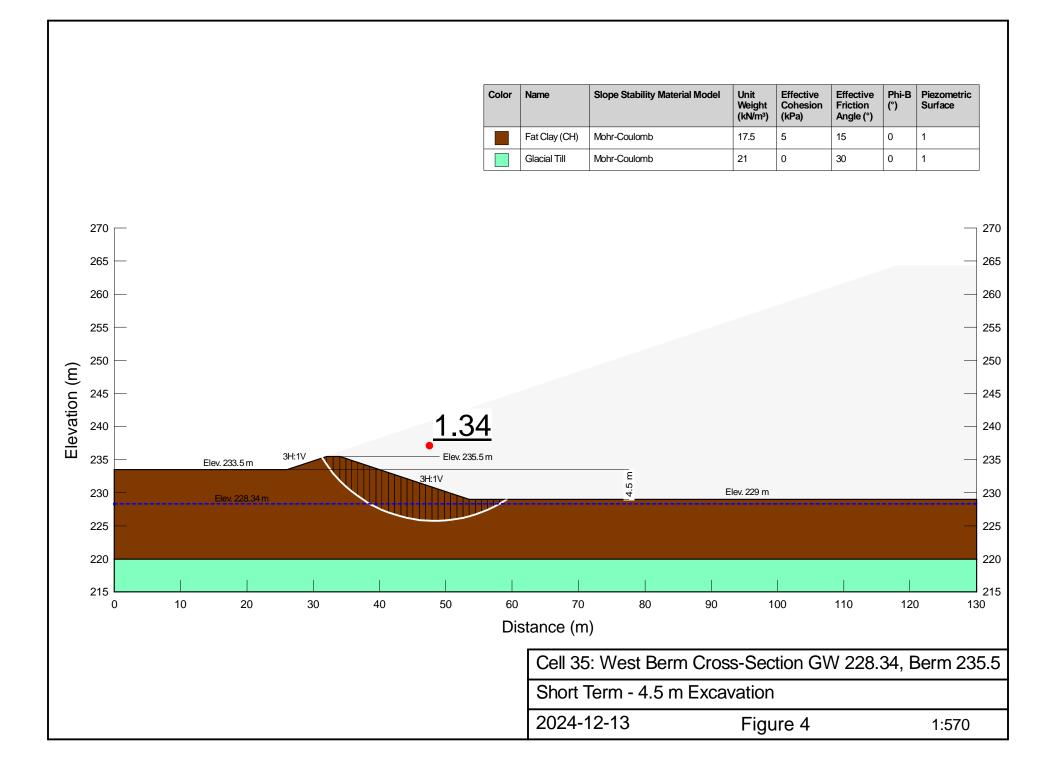
Project Name: Brady Land	Ifill			
Project Number: 60733855		Supplier/Location:	Brady Landfill	
Client: City of Win	nipeg	Field Technician:	COlivar	
Sample Location: BH24-01 to	BH24-15	Sample Date:	22-Jul-24	
Sample Depth : 0.46 - 1.52	m	Lab Technician:	JEnriquez	
Sample Number: Varies		Date Tested:	15-Aug-24	
Standard Test Methods for Labo TRIAL NUMBER Wet Unit Weight (kg/m ³) Dry Unit Weight (kg/m ³) Moisture Content (%) 1650 1640 1630 1640 1610 1600 1590 1580 1570 1540 1550 1540 1540 1500 1540 1500 1540 1440	1 2 1745 1962 1459 1607 19.6 22	tor (ASTM D69 stics of Soil Using Standard 3 1946 26 26 26 26 26 26 26 26 26 26 26 26 26	129 1473 1473 29	(600 kN-m/m ³))
Departmention / Dema			(kg/m3):	4505
Description / Rema Received moisture content (%)		AXIMUM DRY DENSITY OPTIMUM MOISTURE (%		1595 24.1
Specific Gravity (Assumed)		PROCTOR No.:).	24.1 P0001
Method Used	A F			1 0001
Method of Preparation	Moist		I	
Type of Rammer	Manual			
Soil Description	Fat Clay (CH)			
Soil Colour	Black			
Reviewed by: Lee Boughton Laboratory Mar			erman Leal, M.Eng., F eotechnical Discipline	

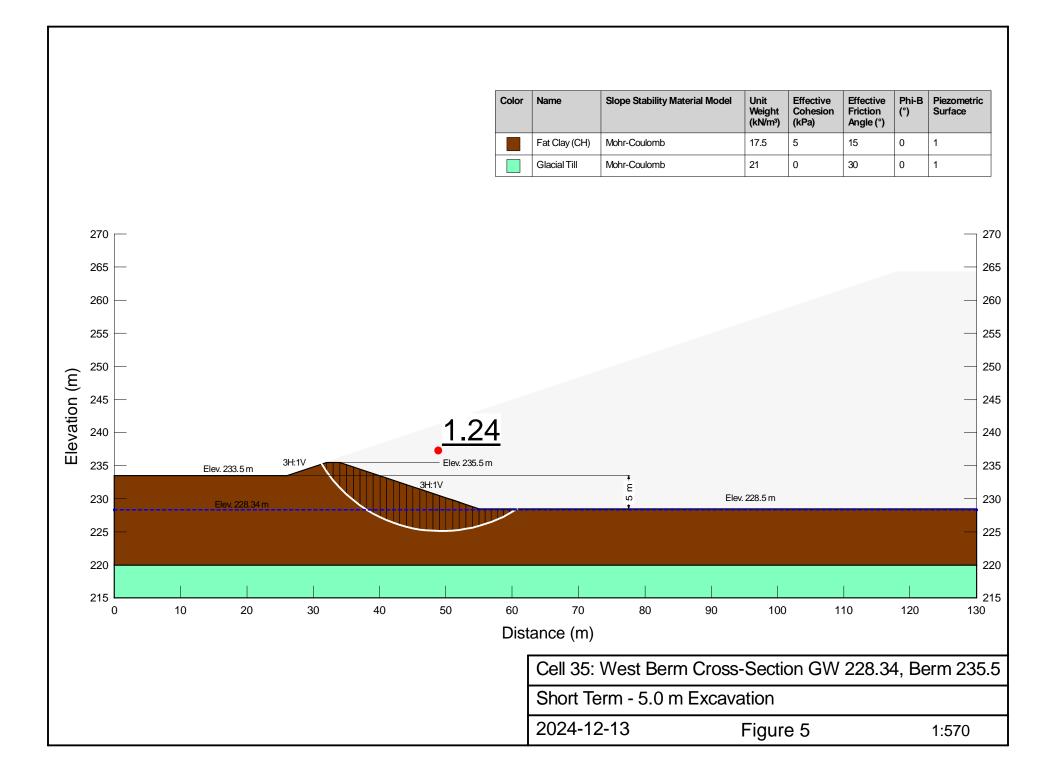
CALIFORNIA BEARING RATIO (CBR) TEST

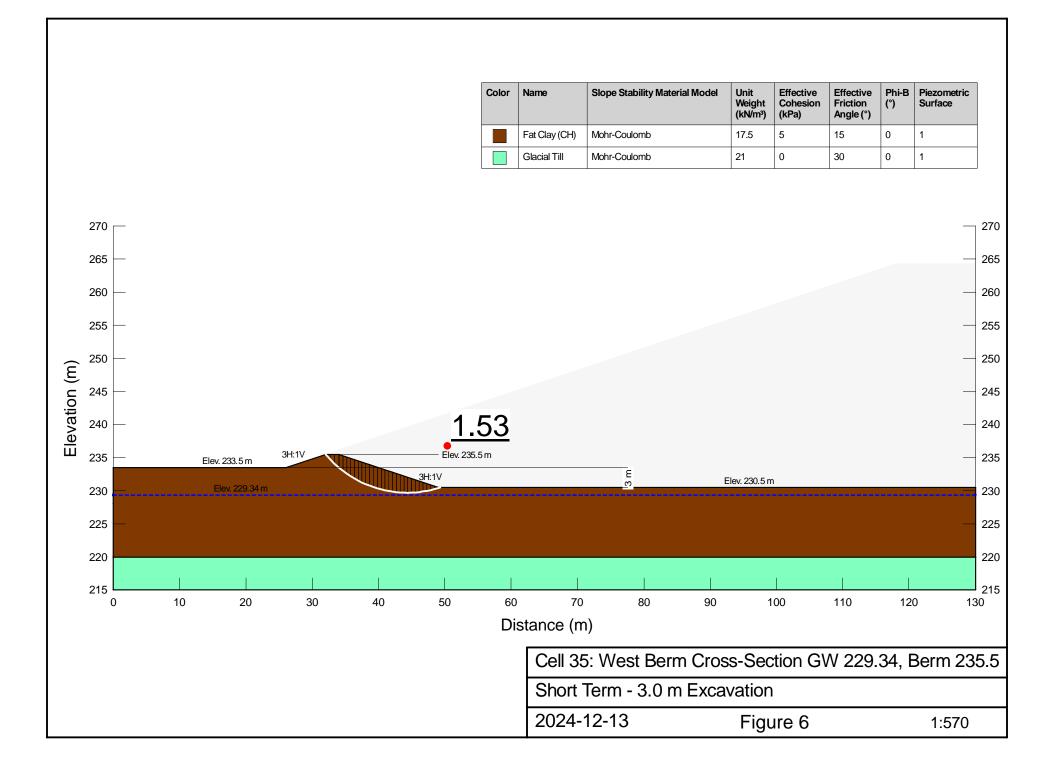

ASTM D1883

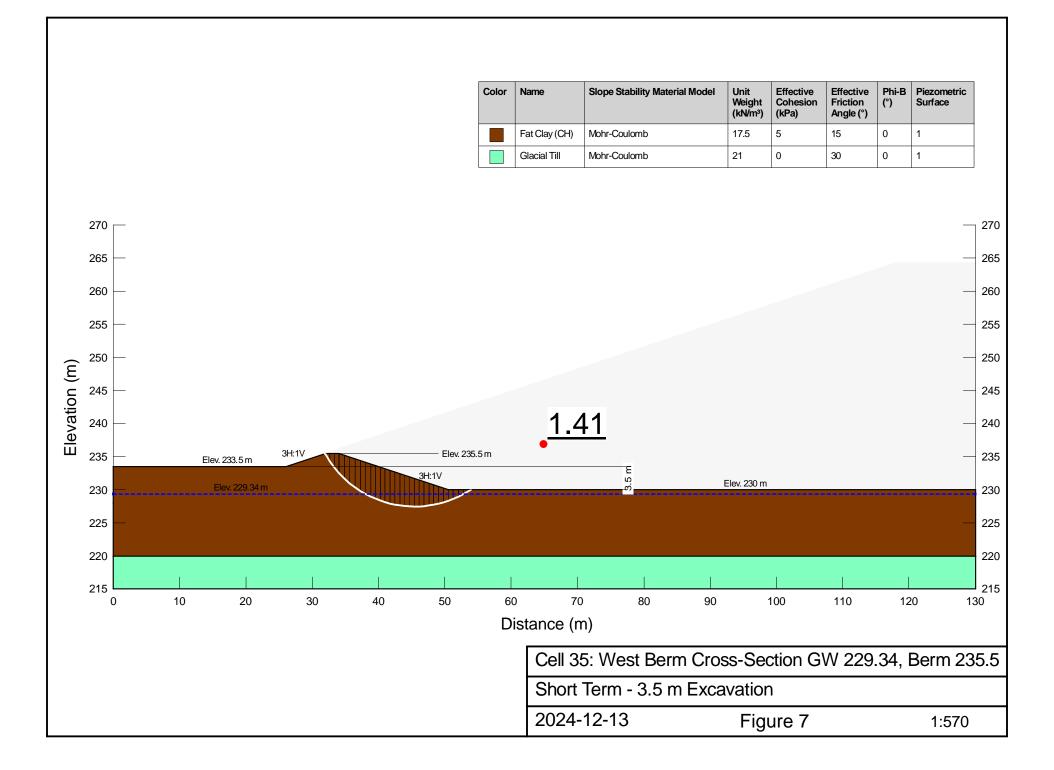

ASTM D1883						
Client: City of Winnipeg	Test Hole ID: See No	ote				
Project Name: Brady Landfill	Sample ID: B1		Sample Depth (m): 0.45m to 1.50 m			
Project Number: 60733855	Soil Description: Cla	· · ·				
Location: Winnipeg, MB	Tested By: JE		Tested Date:	August 16, 2	024	
PROCTOR DATA	CBR DATA		10 blows	25 blows	56 blows	
Optimum Moisture Content (%) 20.4	Moisture Content, M	C (%)	21.1%	21.5%	20.8%	
Maximum Dry Density (kg/m3) 1595	Wet Density (kg/m3)		1444.0	1748.8	1917.9	
Proctor Test Method Standard	Dry Density (kg/m3)		1191.9	1439.1	1587.0	
Tested by: LB	Compaction Degree	(%)	75%	90%	100%	
Remark:	Surcharge Weight (g	g)	4506	4506	4506	
Soaked CBR at 95% of SPMDD	Soaked for (days)	_	4	4	4	
	Swell (%)		0.1%	0.6%	0.3%	
	PENETRATION DAT	ГА				
		Penetration	C	Pressure (MPa)	
0.45		(mm)				
0.40		0	0.0	0.0	0.0	
0.35		0.635	0.04	0.05	0.09	
		1.27	0.04	0.07	0.18	
(re 0.30 (re 0.25 (re 0.20 (re 0.10		1.905	0.05	0.08	0.23	
		2.54	0.05	0.09	0.27	
8 0.15	*	3.175	0.06	0.11	0.30	
۵.10 × • • • •		3.81	0.06	0.12	0.32	
0.05		4.445	0.06	0.12	0.34	
0.00		5.08	0.07	0.13	0.36	
0 2 4 6	8 10	6.35	0.07	0.13	0.38	
Penetration (mm)		7.62	0.07	0.14	0.41	
		10.16	0.07	0.16	0.47	
		12.7	0.08	0.17	0.52	
4.0	A		Corrected Pr	essure (MPa)		
	/p	at 2.54 mm	0.06	0.10	0.27	
3.0		at 5.08 mm	0.07	0.13	0.36	
			Corrected B	earing Ratio		
2.0		at 2.54 mm	0.8	1.4	3.9	
CBR		at 5.08 mm	0.7	1.2	3.5	
1.0		Standard pressu	re: 6.9 Mpa at 2.5	4 mm penetration		
			10.3 Mpa at	5.08mm penetrati	on	
0.0	1510					
1110 1210 1310 1410	1510		CBR	Value		
Dry Density (kg/m3)		CBR at	95 % of	maximum di	y density	
Test Data at 2.54 mm penetration	2.54 mm penetration	Dry density,	kg/m3:	1515		
	5.08mm penetration	CBR at 2.54 mm: 2.5				
		CBR at 5.08	mm:	2.1		
Note		Reviewed ar	d Approved b	y:		
PROCTOR NUMBER: 2401						
		<u>German Lea</u>	l, M.Eng., P.E	ng.		
		Geotechnica	l Discipline Le	ead		

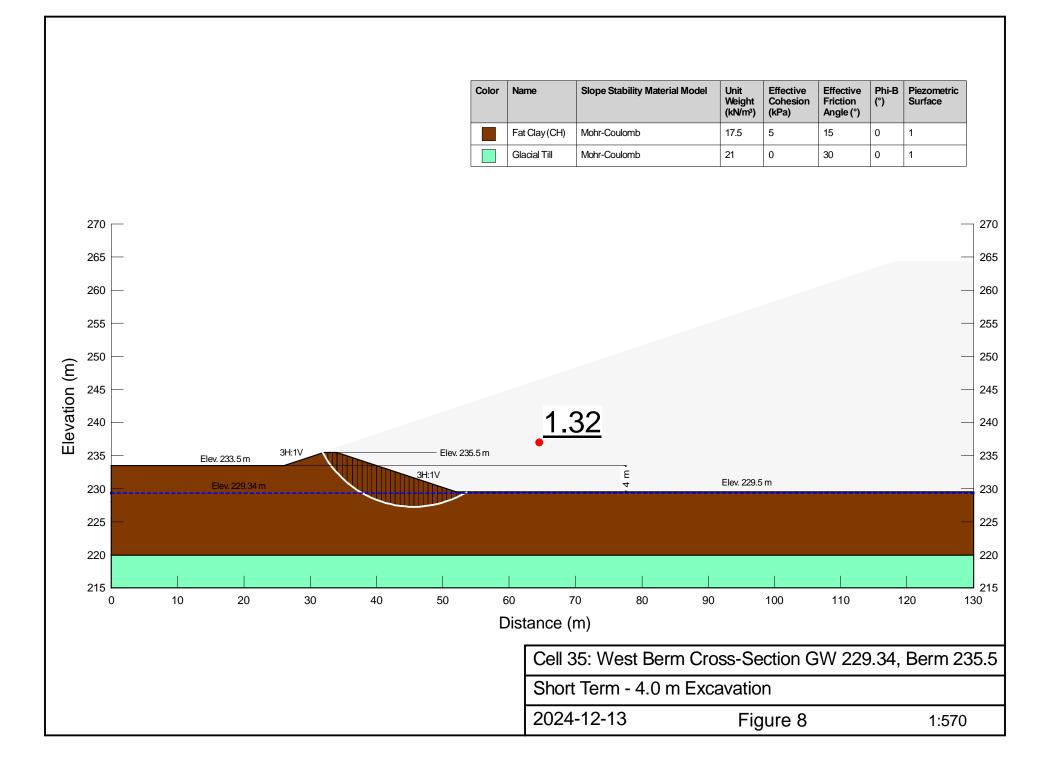

AECOM

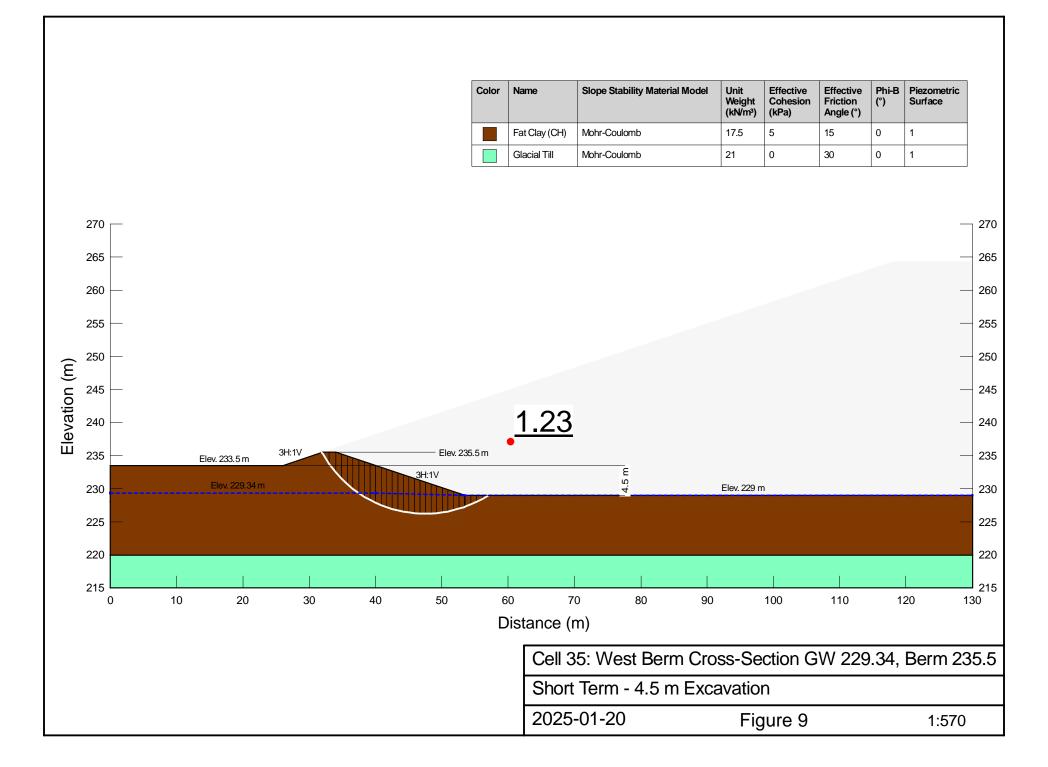


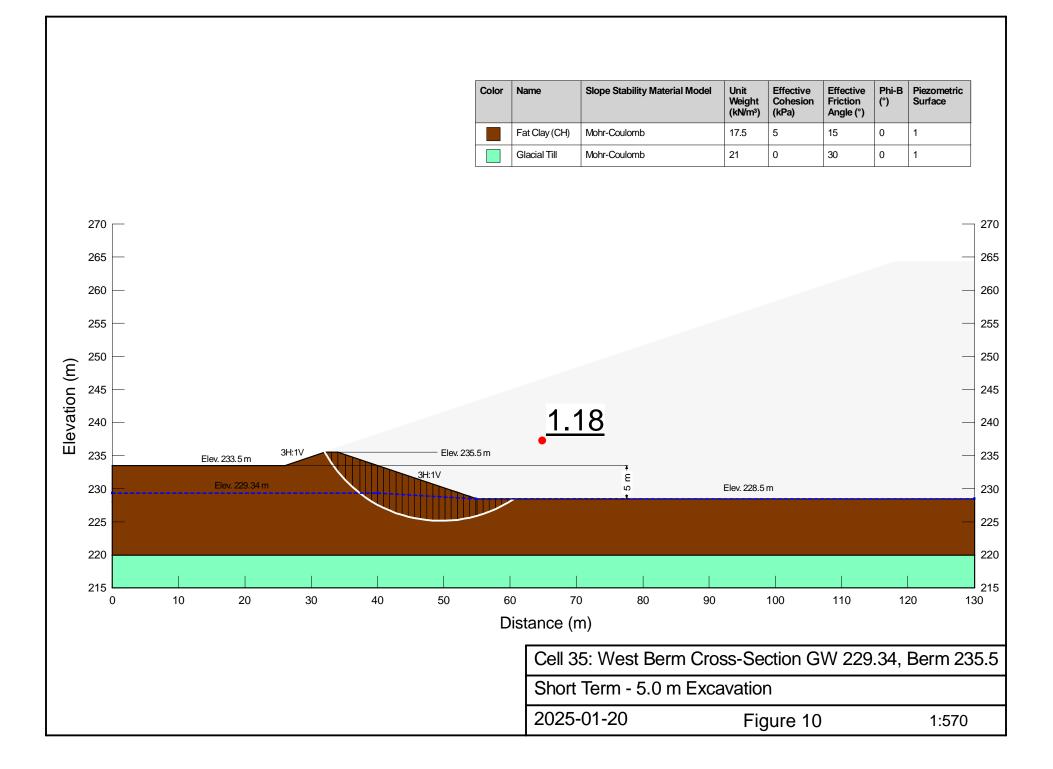

Slope Stability Design Outputs

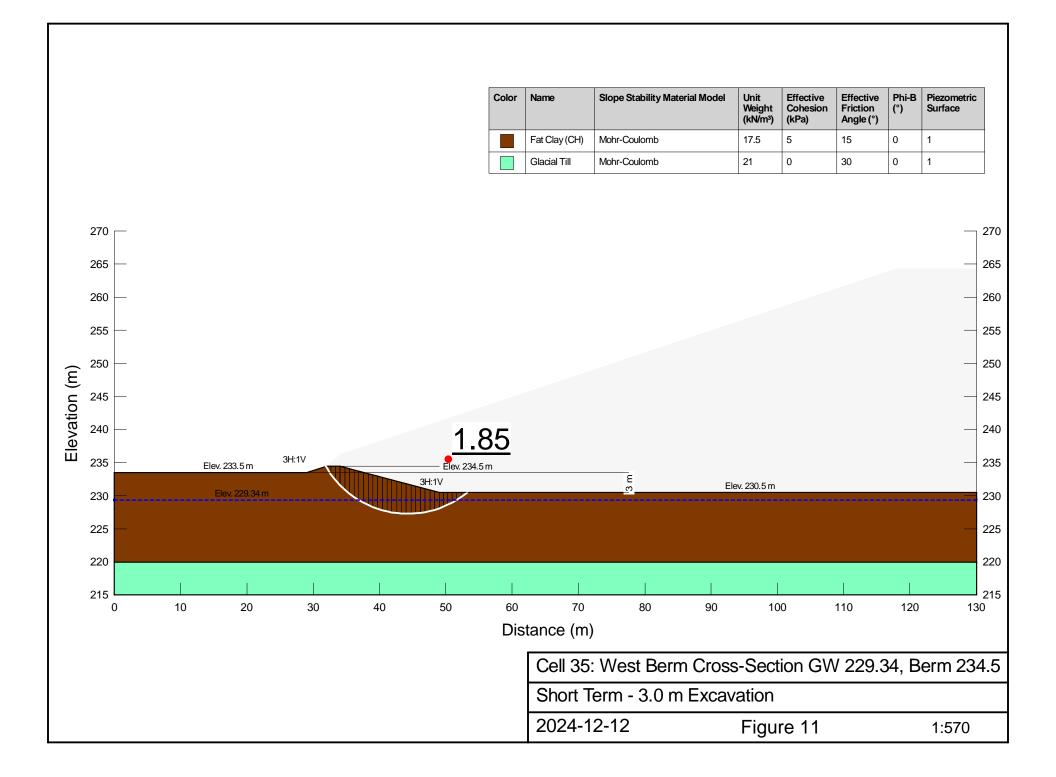


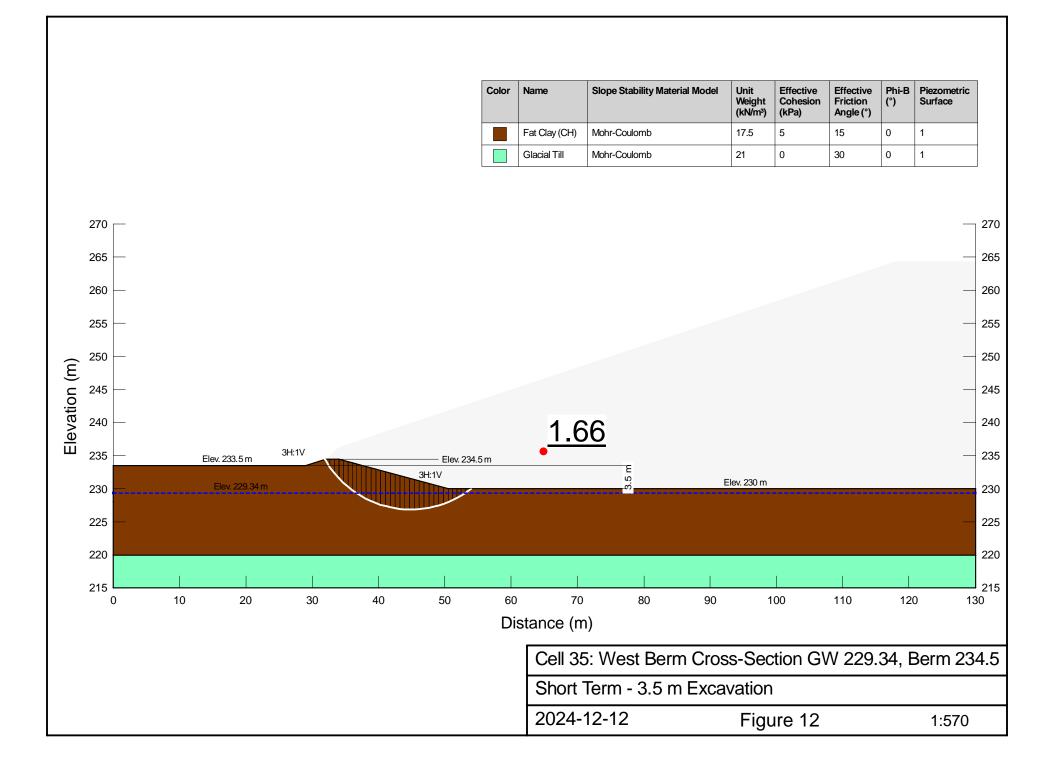


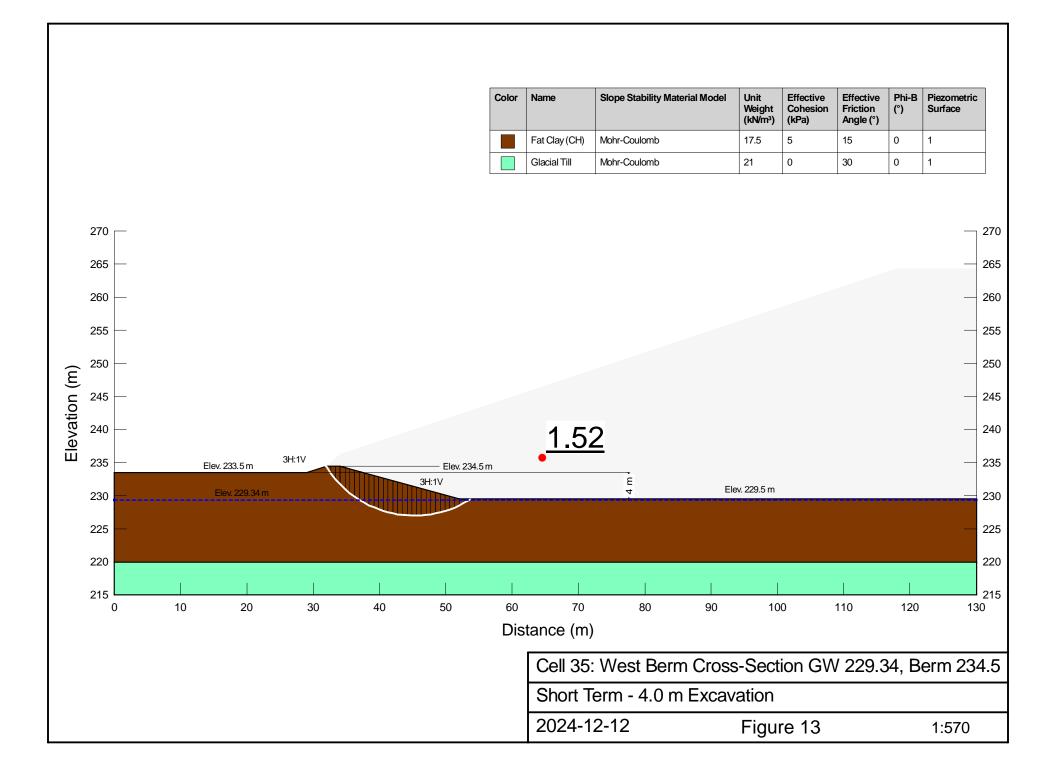


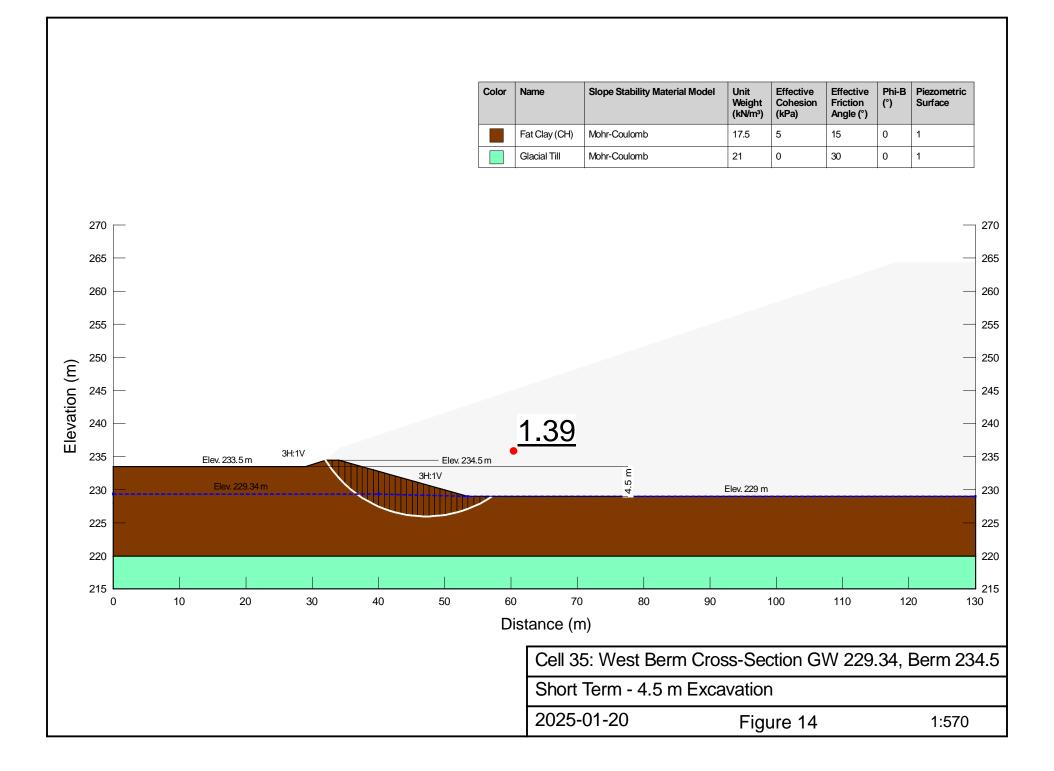


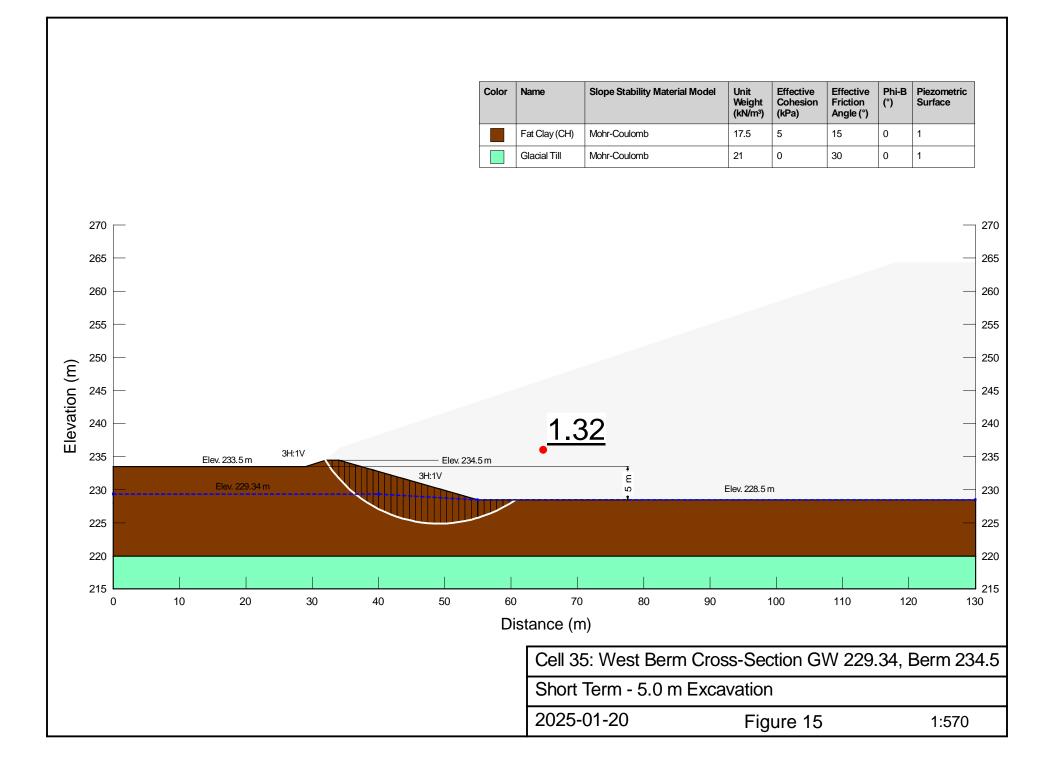


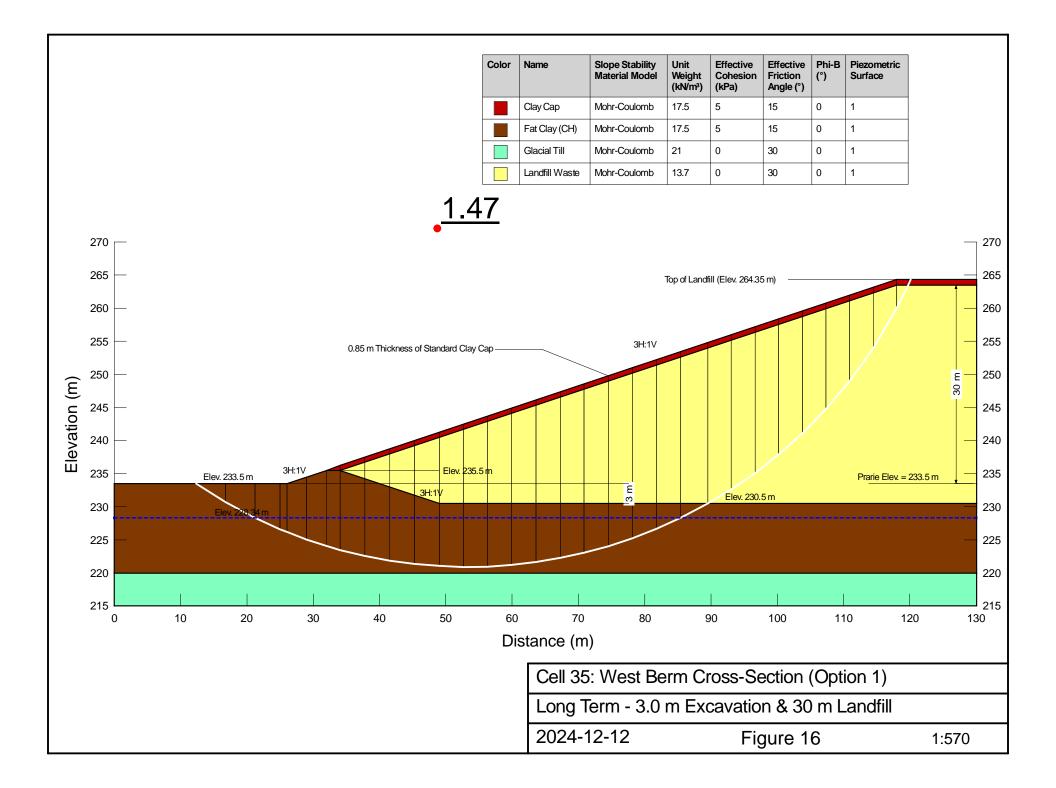


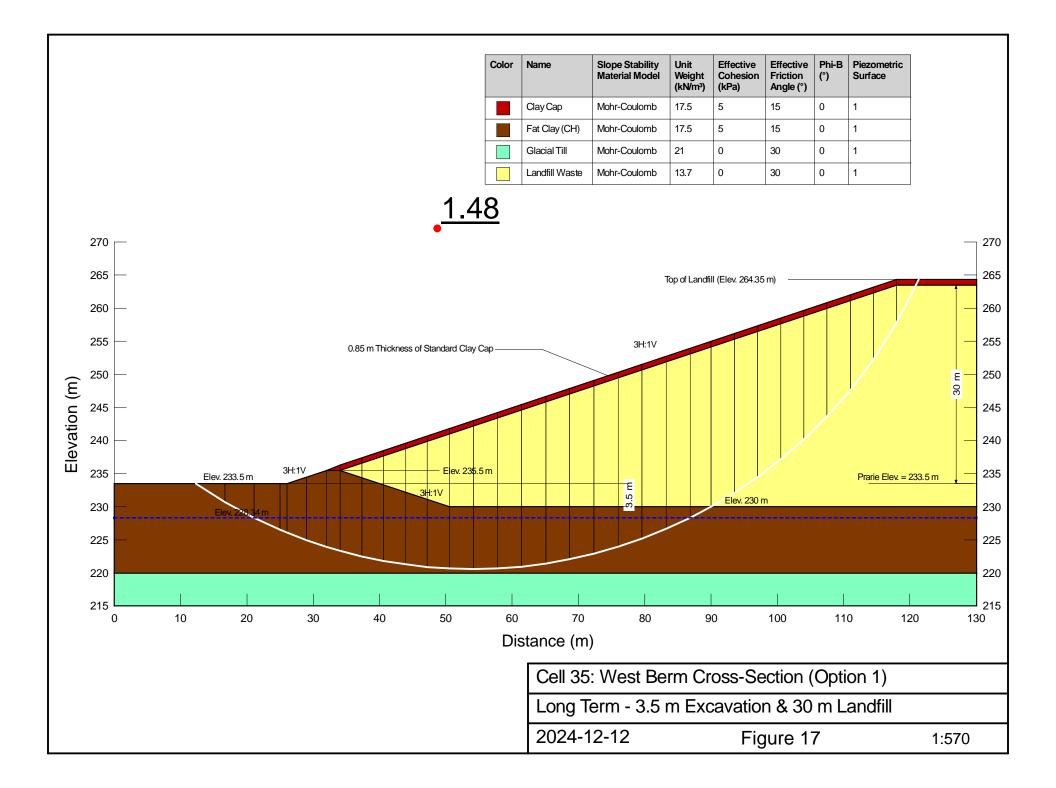




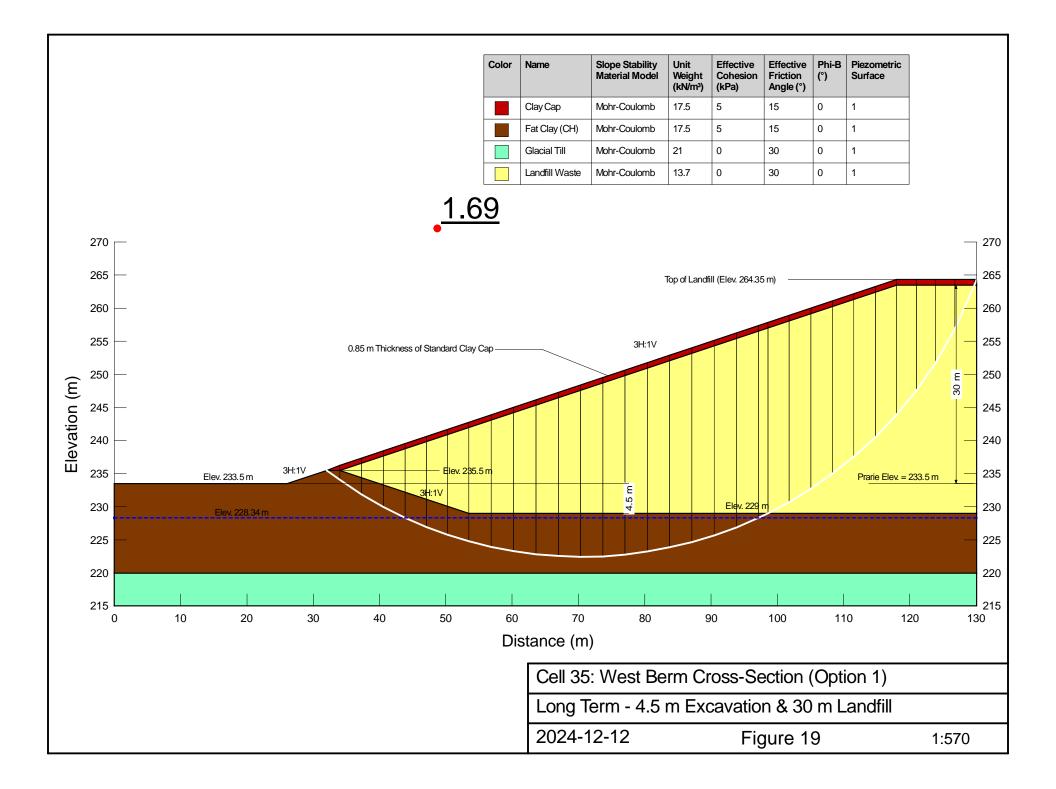


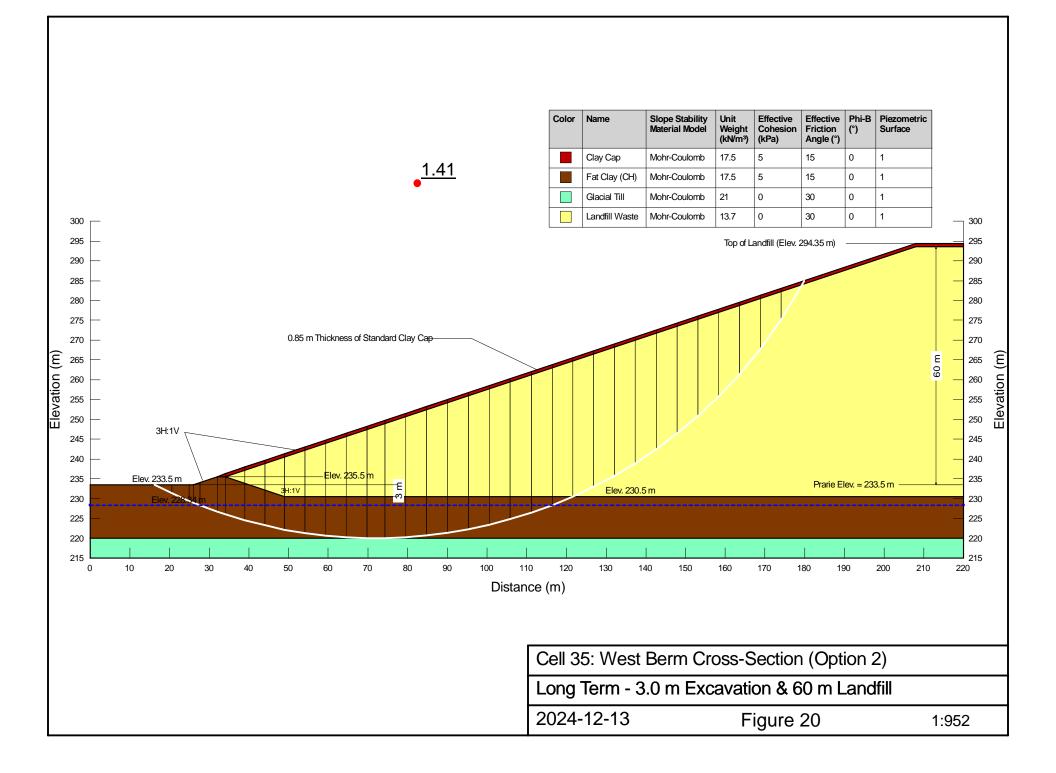


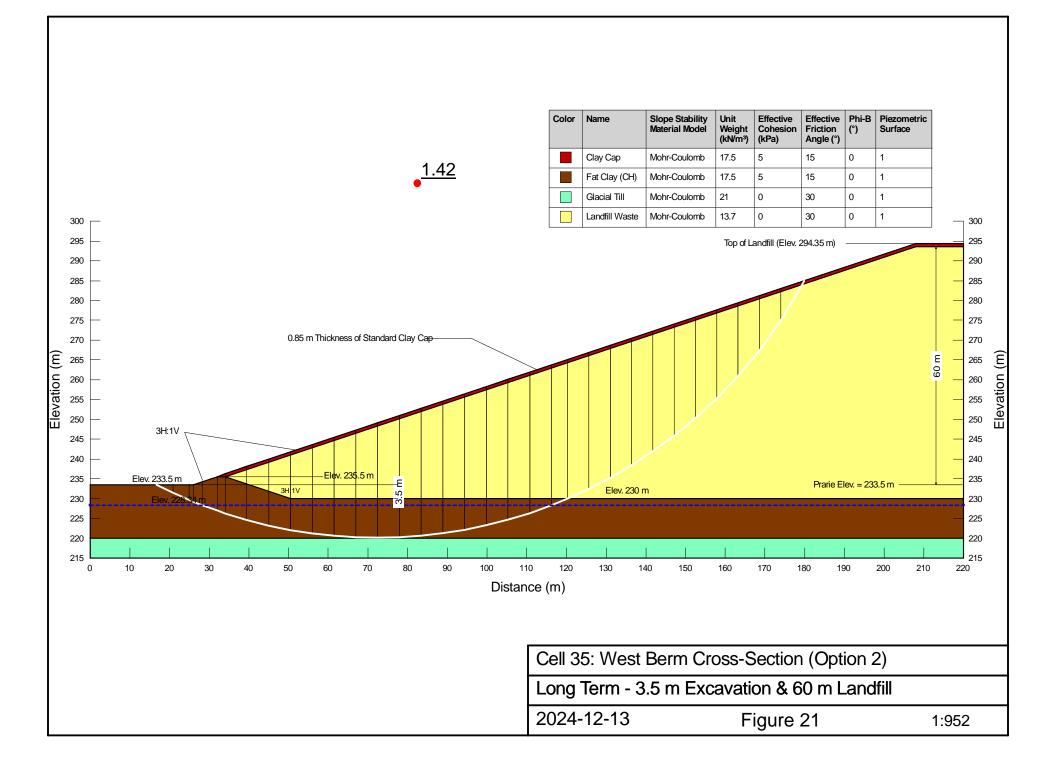


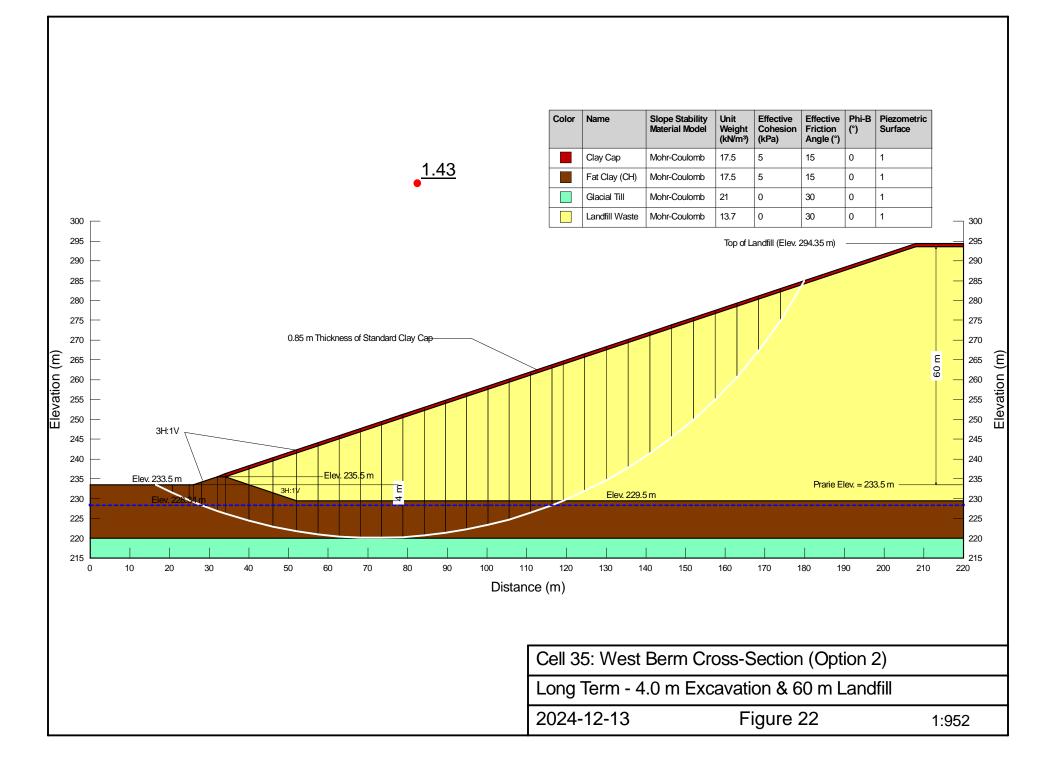


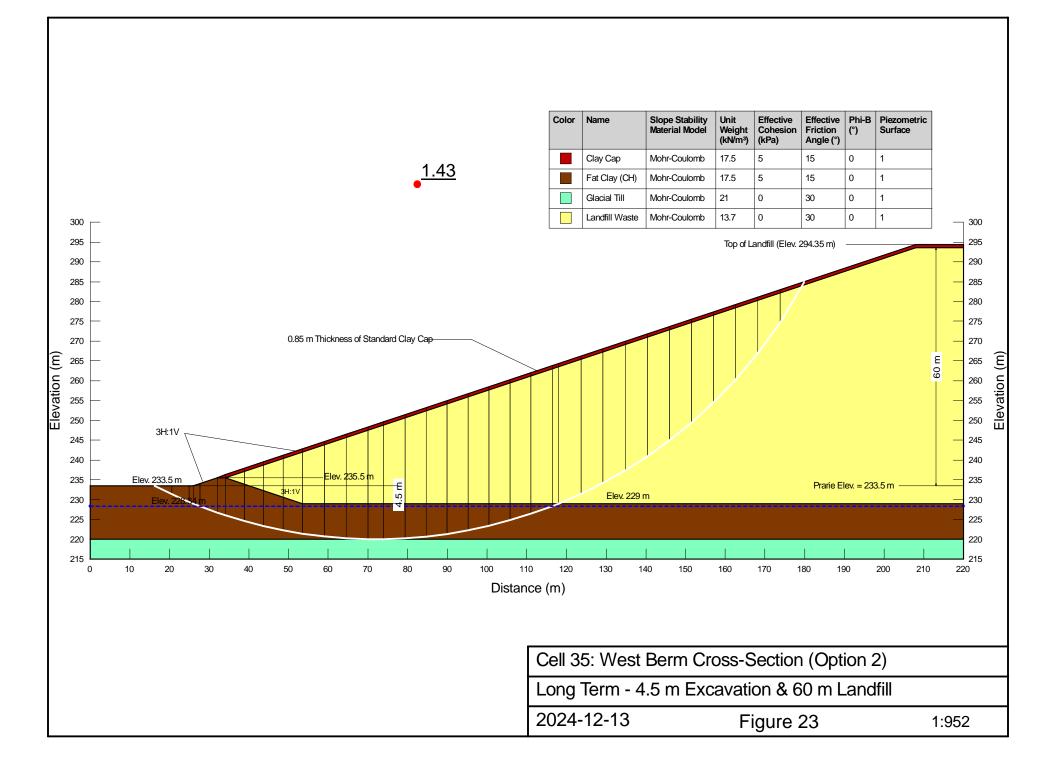


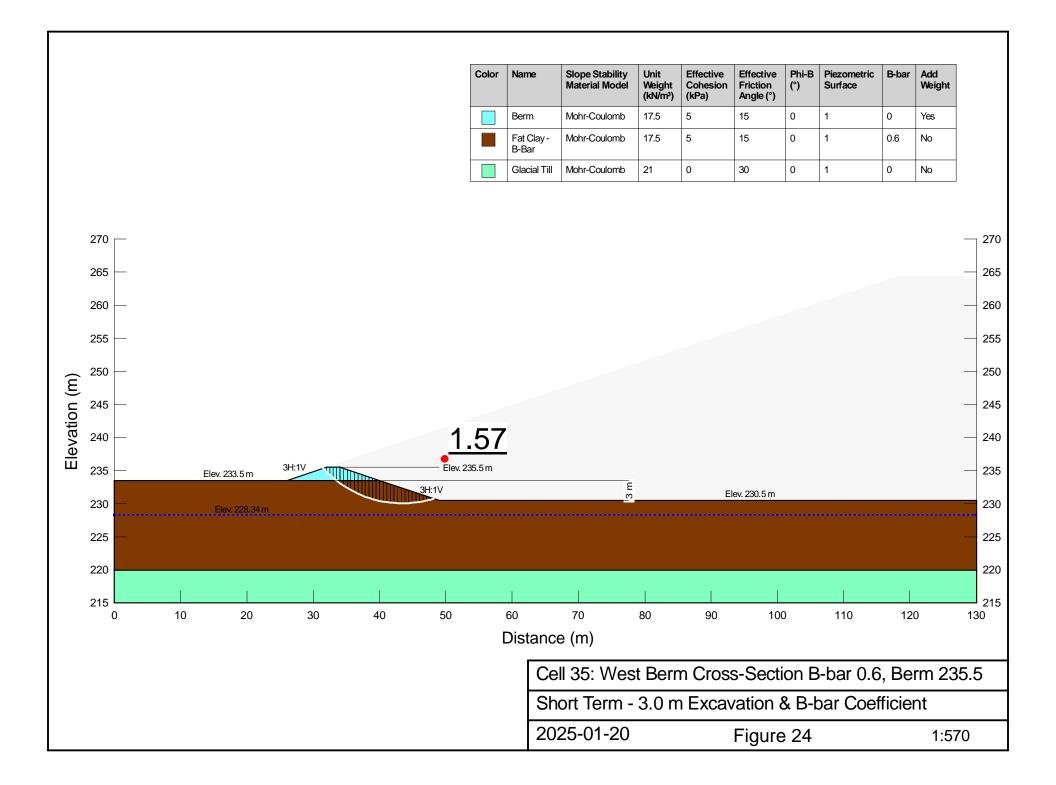


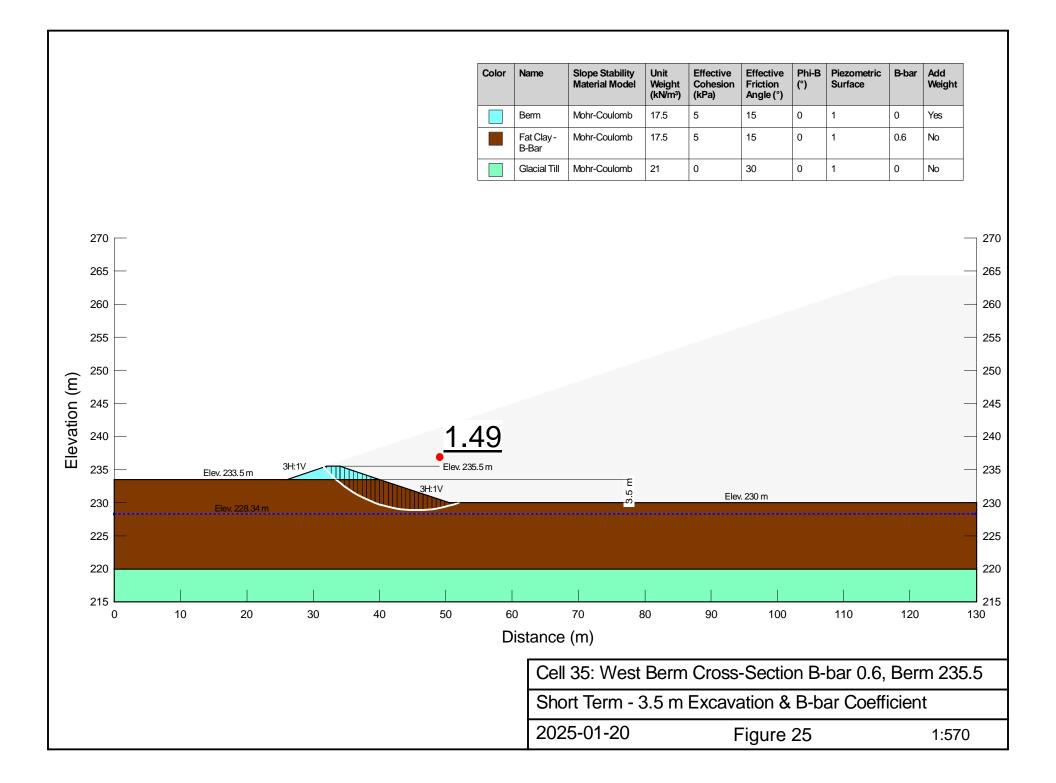


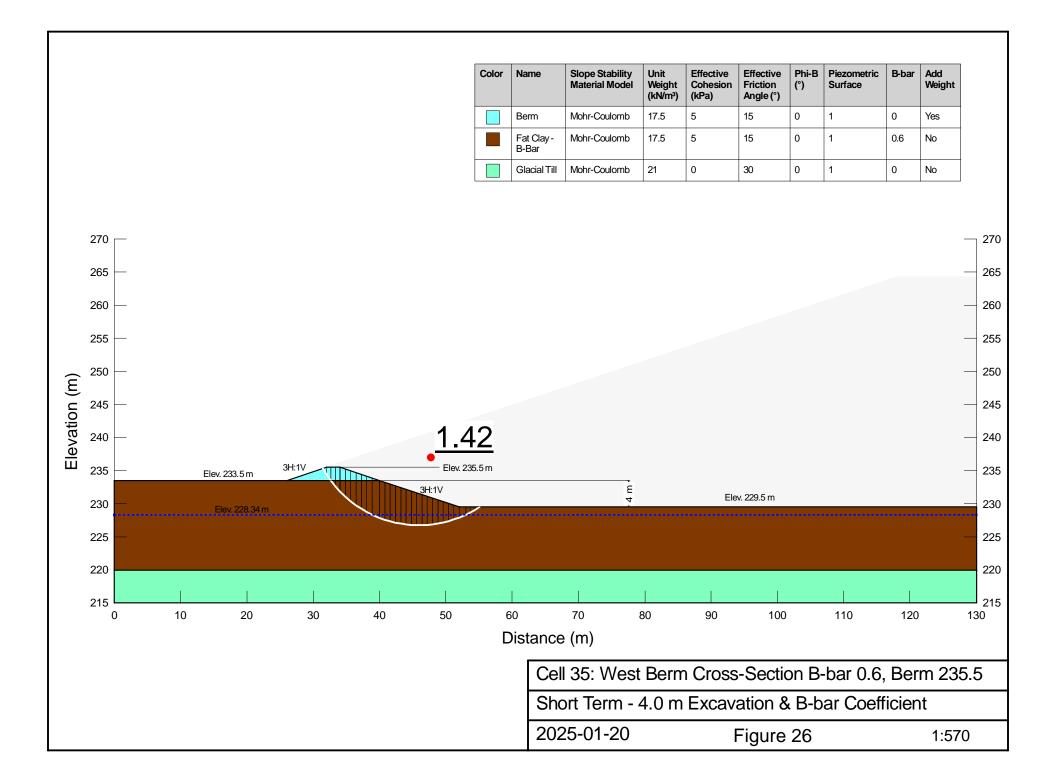


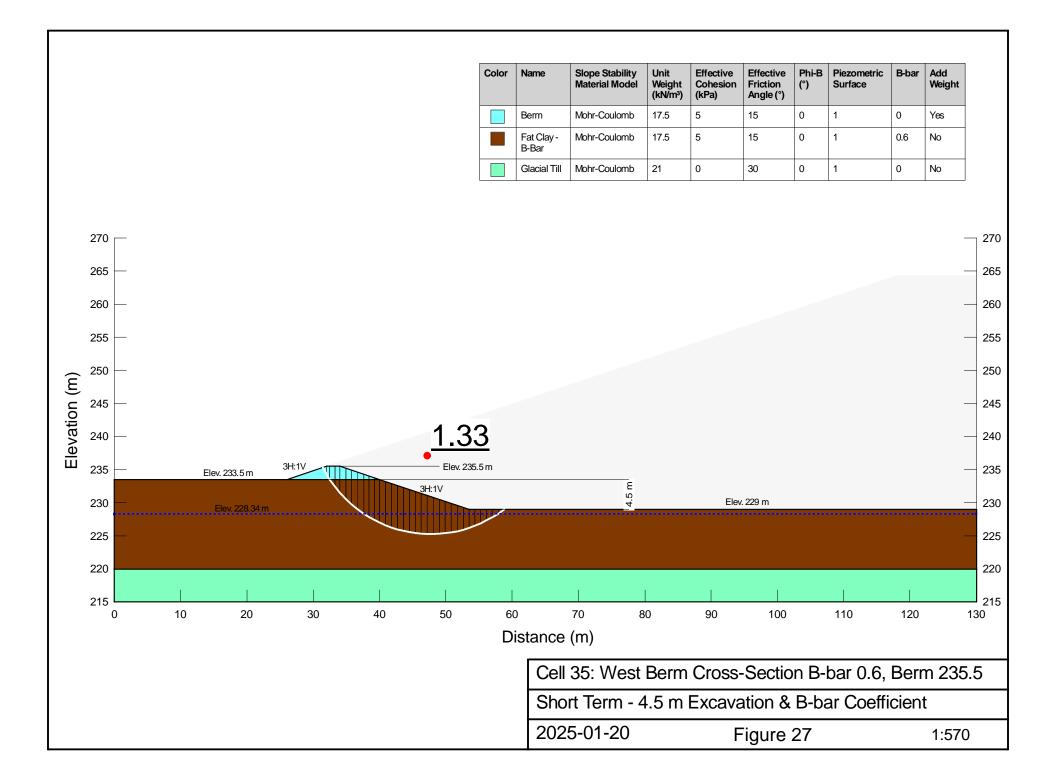


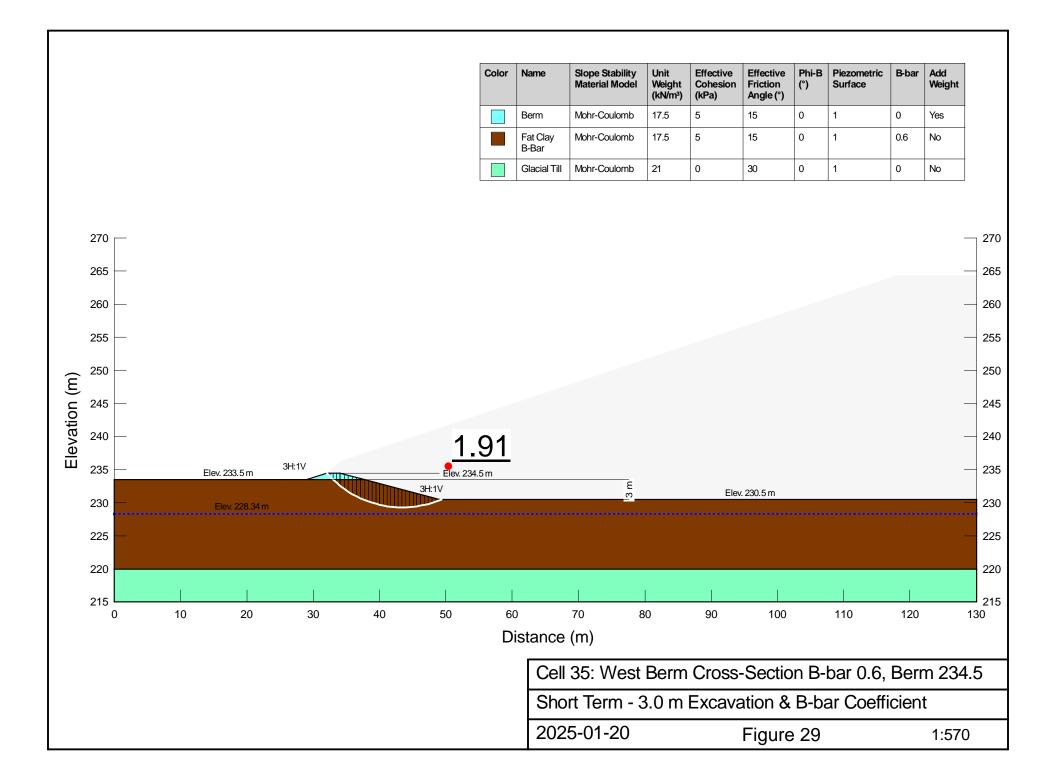


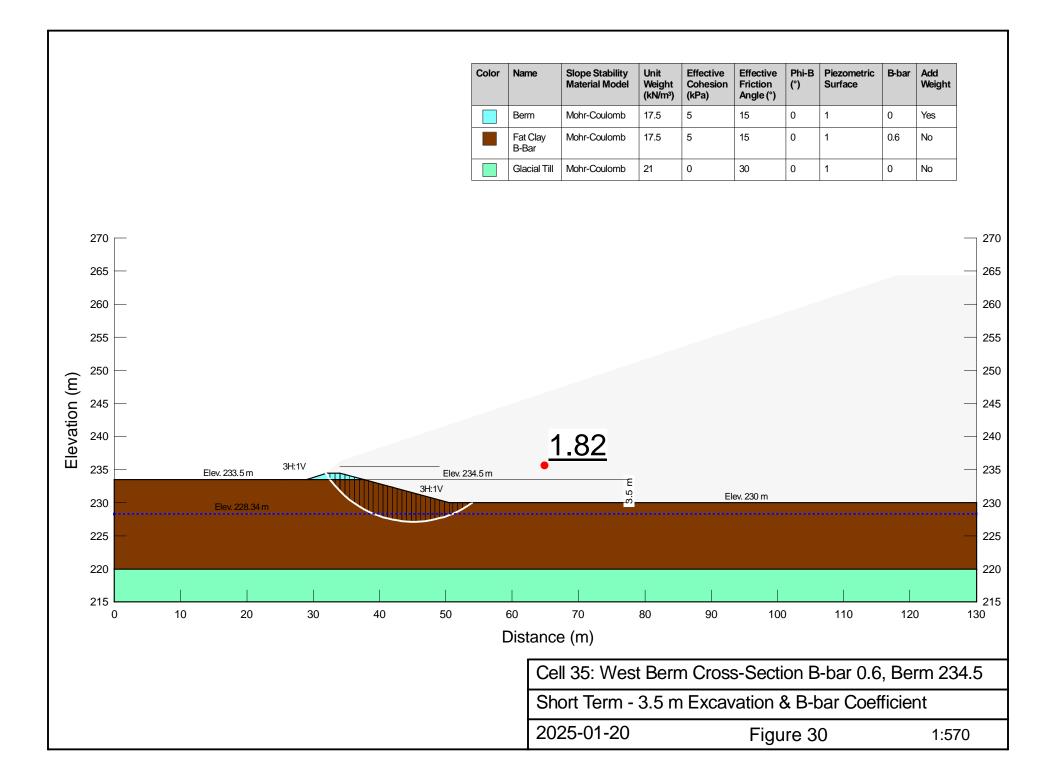


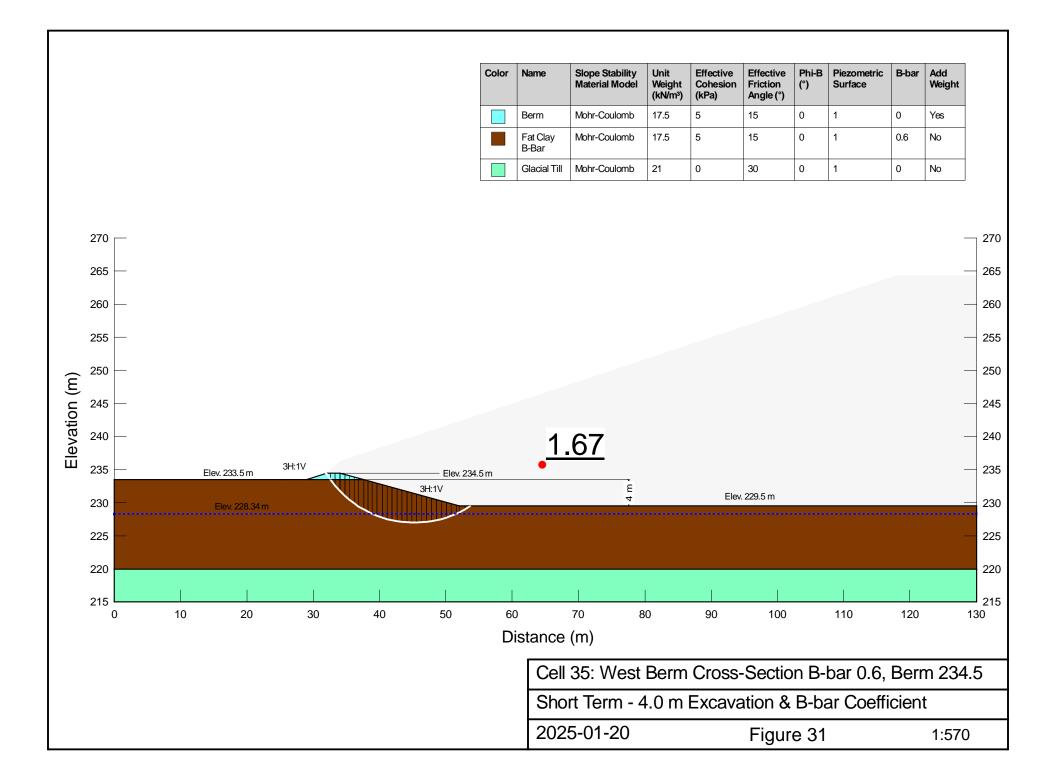


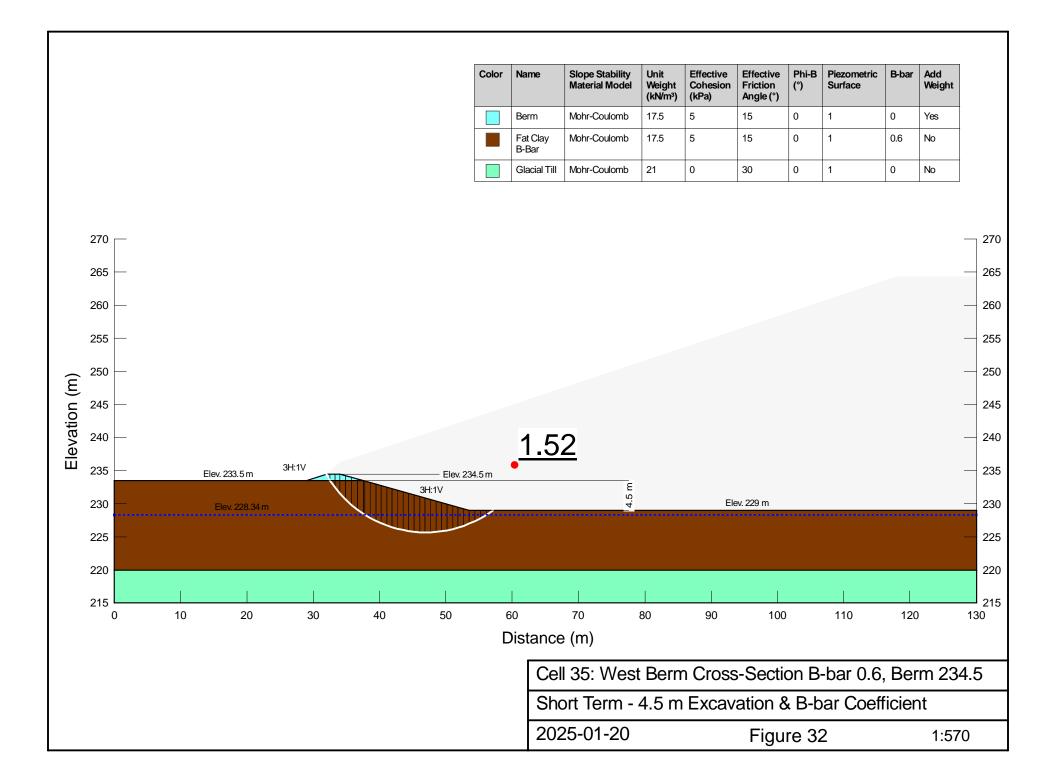


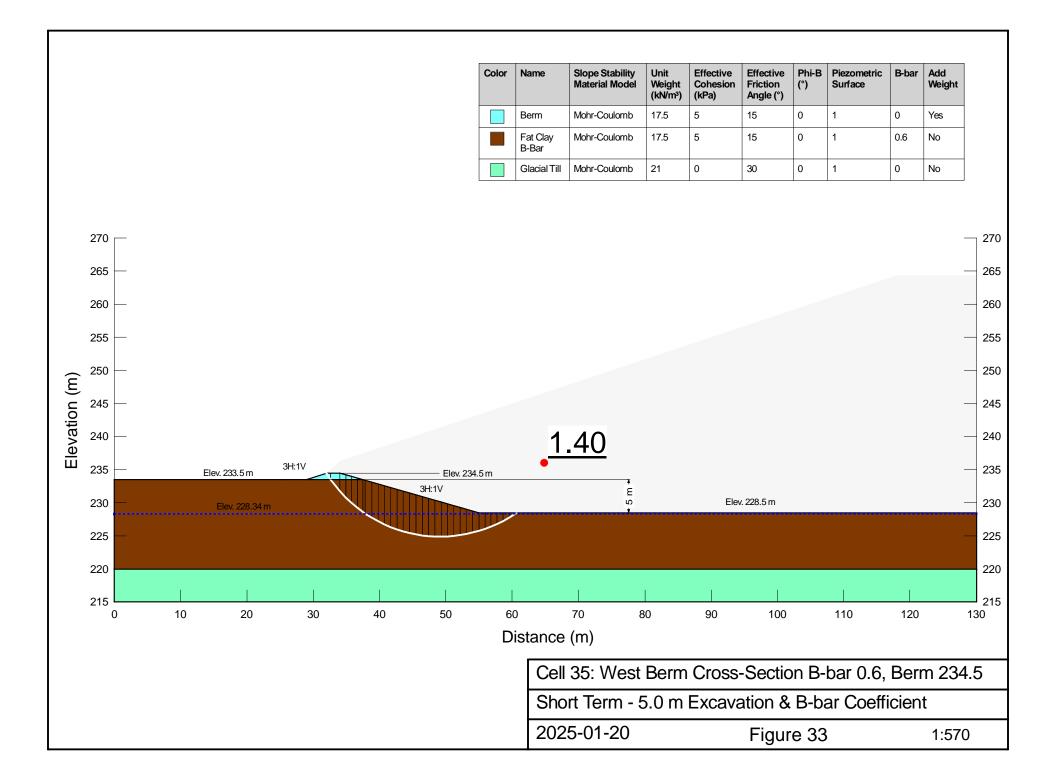


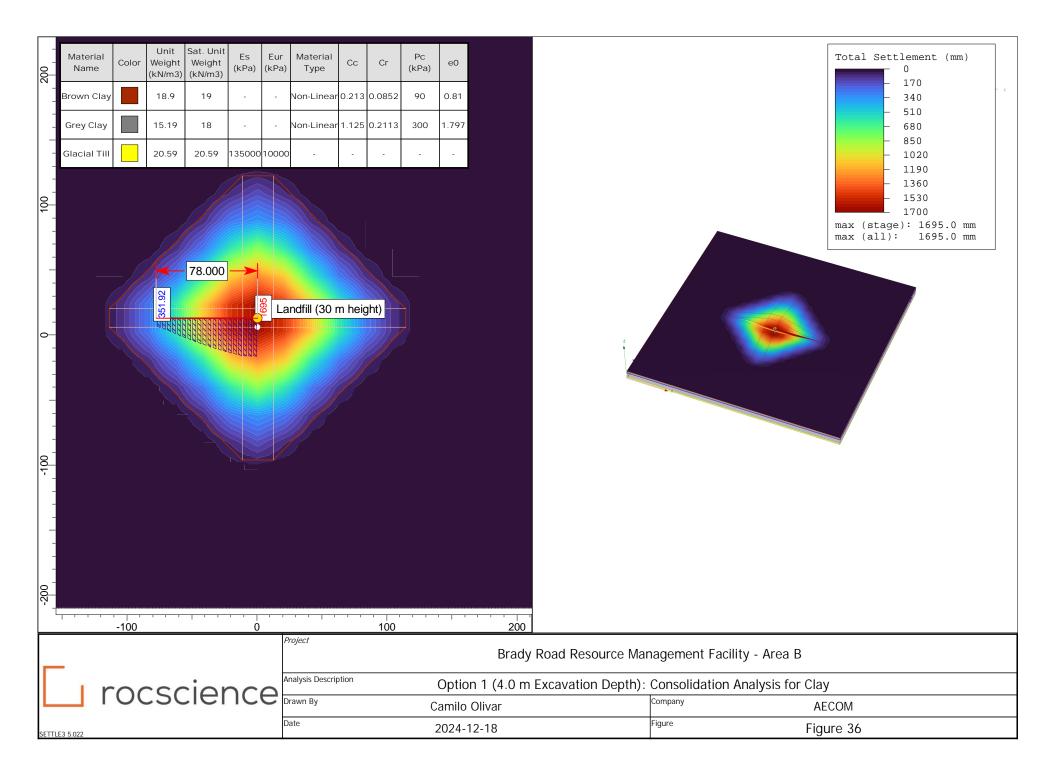


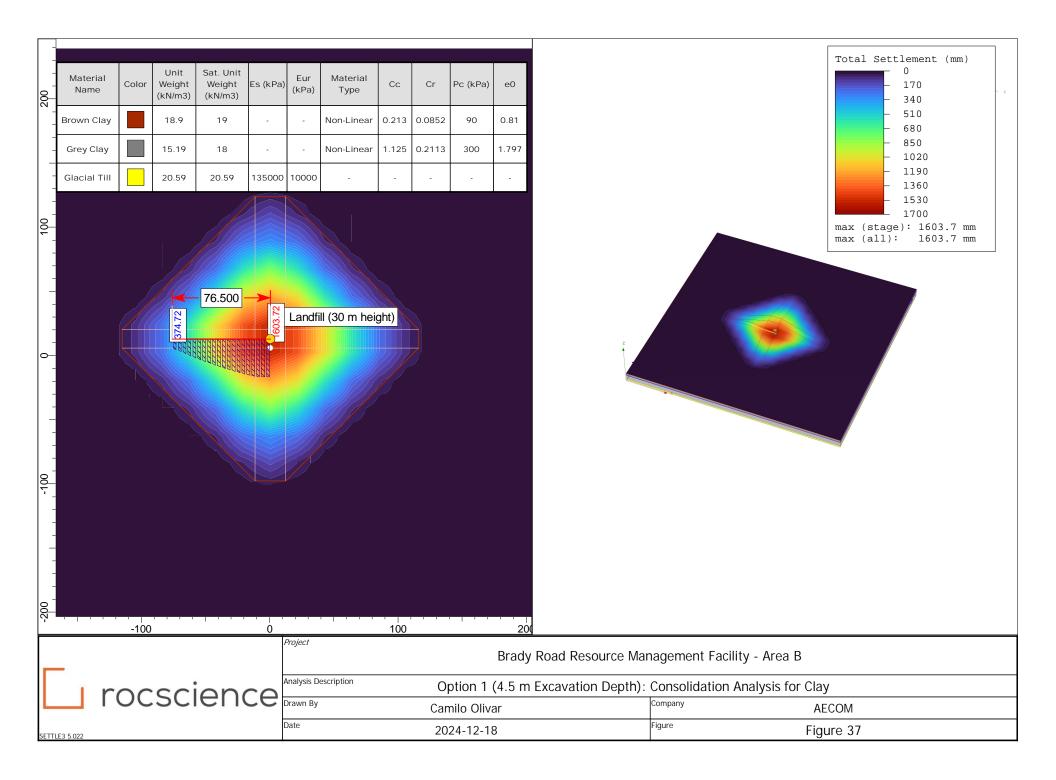






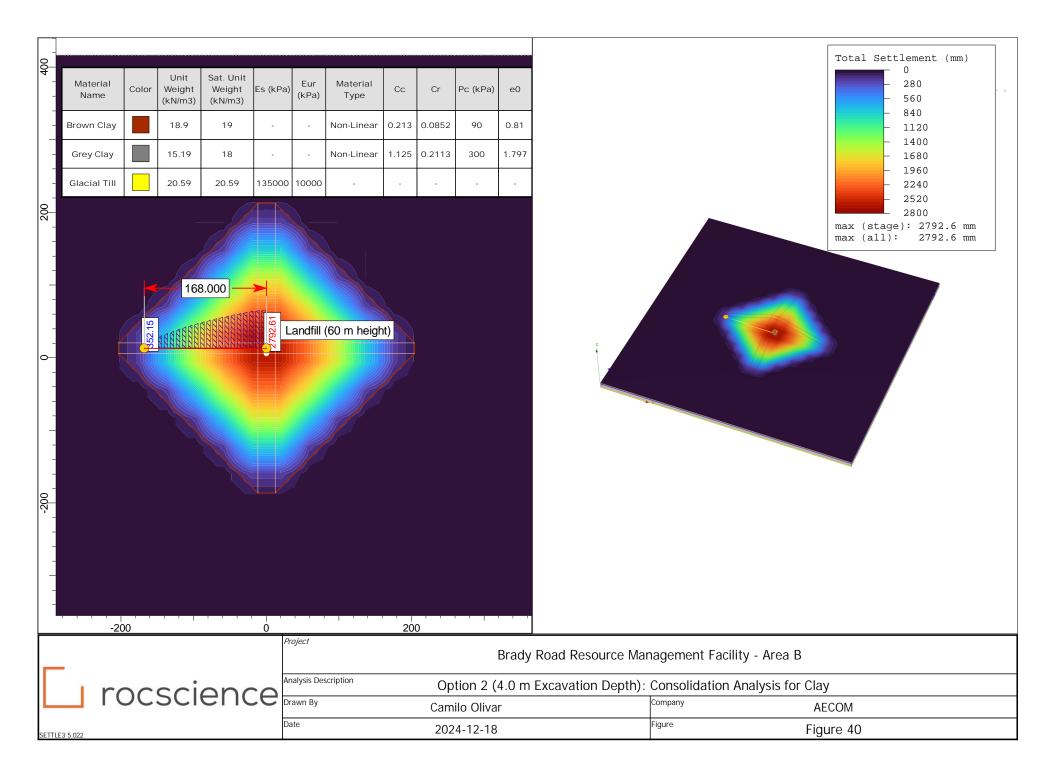






Settlement Design Outputs

	1		1				1	1	
- _ Material Name	olor Unit (kN/m3)	Sat. Unit Weight (KN/m3)	Es (kPa)	Eur (kPa)	Material Type	Сс	Cr	Pc (kPa)	e0
Brown Clay	18.9	19	-	-	Non-Linear	0.213	0.0852	90	0.81
Grey Clay	15.19	18	-	-	Non-Linear	1.125	0.2113	300	1.797
Glacial Till	20.59	20.59	135000	10000	-	-	-	-	-
	120.56				dfill (30 m h	eight)			
_	-100		0			1	00		
			Pr	oject					Brady
l ro	csci	ond	Ar	alysis De	scription	Op	tion 1 ((3.0 m E	xcava
	CSCI	GIIC					Cam	ilo Oliva	r
			Da	ate			202	4-12-18	


											الارتيان
200	Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Es (kPa)	Eur (kPa)	Material Type	Cc	Cr	Pc (kPa)	e0
	Brown Clay		18.9	19	-	-	Non-Linear	0.213	0.0852	90	0.81
-	Grey Clay		15.19	18	-	-	Non-Linear	1.125	0.2113	300	1.797
	Glacial Till		20.59	20.59	135000	10000	-	-	-	-	-
							_andfill (30	D m he			
_		-100				0 Pro	ject		10	00	
						Δησ	alysis Descript	ion			
		\sim	\sim				ingois Descript			С	ptio
	r	OC	SC	ier	ICE		wn By			Ca	milo

40																	
	Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Es (kPa)	Eur (kPa)	Material Type	Сс	Cr	Pc (kPa)	e0					Total	Settlement (mm) - 300
- B	Brown Clay		18.9	19	-	-	Non-Linear	0.213	0.0852	90	0.81						- 600 - 900
-	Grey Clay		15.19	18	-	-	Non-Linear	1.125	0.2113	300	1.797						- 1200 - 1500
- 0	Glacial Till		20.59	20.59	135000	10000	-	-	-	-	-						- 1800 - 2100 - 2400
					00000000000000000000000000000000000000	Lan	dfill (60 m	heigh	t)							max (s max (a	- 2700 - 3000 tage): 2988.8 mm
	· · · · · · · · · · · ·																
	-200		-100	1	0	Project	100		1	200	3(ט					
_											Bra	ly Road Res	ource Mana	agement F	Facility - Area B		
1	ro	\sim	cia	end	2	Analysis	Description			Opt	ion 2 (3.0	n Excavatio			ion Analysis for (Clay	
	10						Зу				o Olivar			ompany		AECOM	
ETTLE3 5.022						Date				2024	-12-18		Fi	igure	F	igure 38	

Material Name		Weight	Sat. Unit Weight (kN/m3)	Es (kPa)	Eur (kPa)	Material Type	Сс	Cr	Pc (kPa)	e0								Total	- 2	ement (0 290	(mm)
Brown Clay	/	18.9	19	-	-	Non-Linear	0.213	0.0852	90	0.81									- 8	580 870	
Grey Clay		15.19	18	-	-	Non-Linear	1.125	0.2113	300	1.797									- :	1160 1450	
Glacial Till		20.59	20.59	135000	10000	-	-	-	-	-									- 2	1740 2030 2320	
	1 031.23		69.500 -		90.788 ²	undfill (60 r	m hei	ght)												2610 2900 : 2887. 2887.	.1 mm 1 mm
																				*	
2								2	200												
-2	200				Project			2	200		rady R	Road Re	esource N	Aanagem	ent Fac	ility - Are	a B			, , , , , , , , , , , , , , , , , , ,	
						Description		2						h): Consc	olidation	ility - Are		у			
			enc	ce		Description		2	Opt Camil		3.5 m E			_	olidation	-	s for Cla AE	y ccom ure 39			

40												
- 4	Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Es (kPa)	Eur (kPa)	Material Type	Cc	Cr	Pc (kPa)	e0	Total Settlement (mm) 0 - 270
0	Brown Clay		18.9	19	-	-	Non-Linear	0.213	0.0852	90	0.81	- 540 - 810
300	Grey Clay		15.19	18	-	-	Non-Linear	1.125	0.2113	300	1.797	- 1080 - 1350 - 1620
-	Glacial Till		20.59	20.59	135000	10000	-	-	-	-		- 1890 - 2160
200												
- 2(max (stage): 2624.6 mm max (all): 2624.6 mm
-												
100	ŀ		166.50	0>								
11												
-	8				4.58							
0	24 00			SSSSS	La	ndfill (6	60 m height)				z
-												
-												
-100												
-												
-200												
2												
-												
-300												
30												
	-200		-100		0	· · · ·	100		200		300	
					,	Project					Brad	y Road Resource Management Facility - Area B
Г			cci	end	~~	Analysis D	escription					2 (4.5 m Excavation Depth): Consolidation Analysis for Clay
L		JC	SCI	ene					Са	amilo Oli		Company AECOM
SETTL	E3 5.022					Date			2	024-12-	18	Figure Figure 41

